Edge AI for Internet of Energy: Challenges and Perspectives
- URL: http://arxiv.org/abs/2311.16851v1
- Date: Tue, 28 Nov 2023 15:01:56 GMT
- Title: Edge AI for Internet of Energy: Challenges and Perspectives
- Authors: Yassine Himeur, Aya Nabil Sayed, Abdullah Alsalemi, Faycal Bensaali
and Abbes Amira
- Abstract summary: The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI)
This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem.
- Score: 5.267662071764103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital landscape of the Internet of Energy (IoE) is on the brink of a
revolutionary transformation with the integration of edge Artificial
Intelligence (AI). This comprehensive review elucidates the promise and
potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a
meticulously curated research methodology, the article delves into the myriad
of edge AI techniques specifically tailored for IoE. The myriad benefits,
spanning from reduced latency and real-time analytics to the pivotal aspects of
information security, scalability, and cost-efficiency, underscore the
indispensability of edge AI in modern IoE frameworks. As the narrative
progresses, readers are acquainted with pragmatic applications and techniques,
highlighting on-device computation, secure private inference methods, and the
avant-garde paradigms of AI training on the edge. A critical analysis follows,
offering a deep dive into the present challenges including security concerns,
computational hurdles, and standardization issues. However, as the horizon of
technology ever expands, the review culminates in a forward-looking
perspective, envisaging the future symbiosis of 5G networks, federated edge AI,
deep reinforcement learning, and more, painting a vibrant panorama of what the
future beholds. For anyone vested in the domains of IoE and AI, this review
offers both a foundation and a visionary lens, bridging the present realities
with future possibilities.
Related papers
- Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Roadmap for Edge AI: A Dagstuhl Perspective [7.871316017033928]
We envision Edge AI to provide adaptation for data-driven applications, enhance network and radio access, and allow the creation, optimization, and deployment of distributed AI/ML pipelines.
The goal is to share an envisioned roadmap that can bring together key actors and enablers to further advance the domain of Edge AI.
arXiv Detail & Related papers (2021-11-27T16:48:20Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.