Scalable Extraction of Training Data from (Production) Language Models
- URL: http://arxiv.org/abs/2311.17035v1
- Date: Tue, 28 Nov 2023 18:47:03 GMT
- Title: Scalable Extraction of Training Data from (Production) Language Models
- Authors: Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A.
Feder Cooper, Daphne Ippolito, Christopher A. Choquette-Choo, Eric Wallace,
Florian Tram\`er, Katherine Lee
- Abstract summary: This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset.
We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT.
- Score: 93.7746567808049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies extractable memorization: training data that an adversary
can efficiently extract by querying a machine learning model without prior
knowledge of the training dataset. We show an adversary can extract gigabytes
of training data from open-source language models like Pythia or GPT-Neo,
semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing
techniques from the literature suffice to attack unaligned models; in order to
attack the aligned ChatGPT, we develop a new divergence attack that causes the
model to diverge from its chatbot-style generations and emit training data at a
rate 150x higher than when behaving properly. Our methods show practical
attacks can recover far more data than previously thought, and reveal that
current alignment techniques do not eliminate memorization.
Related papers
- Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Large Language Model (LLM) pretraining traditionally relies on autoregressive language modeling on randomly sampled data blocks from web-scale datasets.
We take inspiration from human learning techniques like spaced repetition to hypothesize that random data sampling for LLMs leads to high training cost and low quality models which tend to forget data.
In order to effectively commit web-scale information to long-term memory, we propose the LFR (Learn, Focus, and Review) pedagogy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models [4.081098869497239]
We develop state-of-the-art privacy attacks against Large Language Models (LLMs)
New membership inference attacks (MIAs) against pretrained LLMs perform hundreds of times better than baseline attacks.
In fine-tuning, we find that a simple attack based on the ratio of the loss between the base and fine-tuned models is able to achieve near-perfect MIA performance.
arXiv Detail & Related papers (2024-02-26T20:41:50Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
Given access to a machine learning model, can an adversary reconstruct the model's training data?
This work studies this question from the lens of a powerful informed adversary who knows all the training data points except one.
We show it is feasible to reconstruct the remaining data point in this stringent threat model.
arXiv Detail & Related papers (2022-01-13T09:19:25Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - Extracting Training Data from Large Language Models [78.3839333127544]
This paper demonstrates that an adversary can perform a training data extraction attack to recover individual training examples by querying the language model.
We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data.
arXiv Detail & Related papers (2020-12-14T18:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.