Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- URL: http://arxiv.org/abs/2409.06131v1
- Date: Tue, 10 Sep 2024 00:59:18 GMT
- Title: Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- Authors: Neha Prakriya, Jui-Nan Yen, Cho-Jui Hsieh, Jason Cong,
- Abstract summary: Large Language Model (LLM) pretraining traditionally relies on autoregressive language modeling on randomly sampled data blocks from web-scale datasets.
We take inspiration from human learning techniques like spaced repetition to hypothesize that random data sampling for LLMs leads to high training cost and low quality models which tend to forget data.
In order to effectively commit web-scale information to long-term memory, we propose the LFR (Learn, Focus, and Review) pedagogy.
- Score: 50.78587571704713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) pretraining traditionally relies on autoregressive language modeling on randomly sampled data blocks from web-scale datasets. We take inspiration from human learning techniques like spaced repetition to hypothesize that random data sampling for LLMs leads to high training cost and low quality models which tend to forget data. In order to effectively commit web-scale information to long-term memory, we propose the LFR (Learn, Focus, and Review) pedagogy, a new dynamic training paradigm which focuses and repeatedly reviews complex data blocks at systematic intervals based on the model's learning pace and progress. LFR records the model perplexities for different data blocks and frequently revisits blocks with higher perplexity which are more likely to be forgotten. We pretrain the GPT-2 models (124M - 1.5B) from scratch on the OpenWebText dataset using LFR. We test on downstream tasks from the language modeling, question answering, translation, and problem solving domains to achieve consistently lower perplexity and higher accuracy than the baseline OpenAI models, while obtaining a 20x pretraining speed-up.
Related papers
- Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation [8.013158752919722]
Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data.
We propose a paradigm shift named textbfNOMAD by investigating how to specifically train models for data generation.
arXiv Detail & Related papers (2024-10-27T07:38:39Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - Rephrasing the Web: A Recipe for Compute and Data-Efficient Language
Modeling [27.975832264345772]
We propose Web Rephrase Augmented Pre-training ($textbfWRAP$) that uses an off-the-shelf instruction-tuned model prompted to paraphrase documents on the web.
We show that using WRAP on the C4 dataset, which is naturally noisy, speeds up pre-training by $sim3x$.
At the same pre-training compute budget, it improves perplexity by more than 10% on average across different subsets of the Pile, and improves zero-shot question answer accuracy across 13 tasks by more than 2%.
arXiv Detail & Related papers (2024-01-29T18:19:08Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Scalable Extraction of Training Data from (Production) Language Models [93.7746567808049]
This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset.
We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT.
arXiv Detail & Related papers (2023-11-28T18:47:03Z) - Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data.
The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients.
arXiv Detail & Related papers (2023-07-02T07:06:45Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - Efficient Training of Language Models to Fill in the Middle [17.118891860985123]
We show that autoregressive language models can learn to infill text after we apply a straightforward transformation to the dataset.
We use these ablations to prescribe strong default settings and best practices to train FIM models.
We have released our best infilling model trained with best practices in our API, and release our infilling benchmarks to aid future research.
arXiv Detail & Related papers (2022-07-28T17:40:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.