Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models
- URL: http://arxiv.org/abs/2311.17050v3
- Date: Wed, 24 Jul 2024 06:49:30 GMT
- Title: Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models
- Authors: Zhengming Yu, Zhiyang Dou, Xiaoxiao Long, Cheng Lin, Zekun Li, Yuan Liu, Norman Müller, Taku Komura, Marc Habermann, Christian Theobalt, Xin Li, Wenping Wang,
- Abstract summary: Surf-D is a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies.
We use the Unsigned Distance Field (UDF) as our surface representation to accommodate arbitrary topologies.
We also propose a new pipeline that employs a point-based AutoEncoder to learn a compact and continuous latent space for accurately encoding UDF.
- Score: 83.35835521670955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Previous methods explored shape generation with different representations and they suffer from limited topologies and poor geometry details. To generate high-quality surfaces of arbitrary topologies, we use the Unsigned Distance Field (UDF) as our surface representation to accommodate arbitrary topologies. Furthermore, we propose a new pipeline that employs a point-based AutoEncoder to learn a compact and continuous latent space for accurately encoding UDF and support high-resolution mesh extraction. We further show that our new pipeline significantly outperforms the prior approaches to learning the distance fields, such as the grid-based AutoEncoder, which is not scalable and incapable of learning accurate UDF. In addition, we adopt a curriculum learning strategy to efficiently embed various surfaces. With the pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Extensive experiments are presented on using Surf-D for unconditional generation, category conditional generation, image conditional generation, and text-to-shape tasks. The experiments demonstrate the superior performance of Surf-D in shape generation across multiple modalities as conditions. Visit our project page at https://yzmblog.github.io/projects/SurfD/.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - UDiFF: Generating Conditional Unsigned Distance Fields with Optimal Wavelet Diffusion [51.31220416754788]
We present UDiFF, a 3D diffusion model for unsigned distance fields (UDFs) which is capable to generate textured 3D shapes with open surfaces from text conditions or unconditionally.
Our key idea is to generate UDFs in spatial-frequency domain with an optimal wavelet transformation, which produces a compact representation space for UDF generation.
arXiv Detail & Related papers (2024-04-10T09:24:54Z) - Make-A-Shape: a Ten-Million-scale 3D Shape Model [52.701745578415796]
This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale.
We first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme.
We derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients.
arXiv Detail & Related papers (2024-01-20T00:21:58Z) - Neural Vector Fields for Implicit Surface Representation and Inference [73.25812045209001]
Implicit fields have recently shown increasing success in representing and learning 3D shapes accurately.
We develop a novel and yet a fundamental representation considering unit vectors in 3D space and call it Vector Field (VF)
We show the advantages of VF representation, in learning open, closed, or multi-layered as well as piecewise planar surfaces.
arXiv Detail & Related papers (2022-04-13T17:53:34Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models.
This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation.
arXiv Detail & Related papers (2021-06-10T14:31:54Z) - DUDE: Deep Unsigned Distance Embeddings for Hi-Fidelity Representation
of Complex 3D Surfaces [8.104199886760275]
DUDE is a disentangled shape representation that utilizes an unsigned distance field (uDF) to represent proximity to a surface, and a normal vector field (nVF) to represent surface orientation.
We show that a combination of these two (uDF+nVF) can be used to learn high fidelity representations for arbitrary open/closed shapes.
arXiv Detail & Related papers (2020-11-04T22:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.