Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
- URL: http://arxiv.org/abs/2311.17059v2
- Date: Tue, 22 Apr 2025 02:38:09 GMT
- Title: Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
- Authors: Jun Wang, Hosein Hasanbeig, Kaiyuan Tan, Zihe Sun, Yiannis Kantaros,
- Abstract summary: We introduce a novel Deep Q-learning algorithm that significantly improves learning speed.<n>The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success.
- Score: 11.010530034121224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
Related papers
- Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation [12.243491328213217]
Reinforcement Learning (RL) based methods have been increasingly explored for robot learning.
We propose a Temporal-Logic-guided Hybrid policy framework (HyTL) which leverages three-level decision layers to improve the agent's performance.
We evaluate HyTL on four challenging manipulation tasks, which demonstrate its effectiveness and interpretability.
arXiv Detail & Related papers (2024-12-29T03:34:53Z) - Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
This paper addresses the problem of learning optimal control policies for systems with uncertain dynamics.
We propose an accelerated RL algorithm that can learn control policies significantly faster than competitive approaches.
arXiv Detail & Related papers (2024-10-16T00:53:41Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
Currently, humans drive robots to meet scientific objectives, but depending on the robot's location, the exchange of information and driving commands may cause undue delays in mission fulfillment.
An autonomous robot encoded with a scientific objective and an exploration strategy incurs no communication delays and can fulfill missions more quickly.
Active learning algorithms offer this capability of intelligent exploration, but the underlying model structure varies the performance of the active learning algorithm in accurately forming an understanding of the environment.
arXiv Detail & Related papers (2023-09-28T02:45:14Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Verifying Learning-Based Robotic Navigation Systems [61.01217374879221]
We show how modern verification engines can be used for effective model selection.
Specifically, we use verification to detect and rule out policies that may demonstrate suboptimal behavior.
Our work is the first to demonstrate the use of verification backends for recognizing suboptimal DRL policies in real-world robots.
arXiv Detail & Related papers (2022-05-26T17:56:43Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
This paper addresses the problem of learning control policies for mobile robots modeled as unknown Markov Decision Processes (MDPs)
We propose a novel accelerated model-based reinforcement learning (RL) algorithm for control objectives that is capable of learning control policies significantly faster than related approaches.
arXiv Detail & Related papers (2022-05-09T17:09:51Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Overcoming Exploration: Deep Reinforcement Learning in Complex
Environments from Temporal Logic Specifications [2.8904578737516764]
We present a Deep Reinforcement Learning (DRL) algorithm for a task-guided robot with unknown continuous-time dynamics deployed in a large-scale complex environment.
Our framework is shown to significantly improve performance (effectiveness, efficiency) and exploration of robots tasked with complex missions in large-scale complex environments.
arXiv Detail & Related papers (2022-01-28T16:39:08Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning to Track Dynamic Targets in Partially Known Environments [48.49957897251128]
We use a deep reinforcement learning approach to solve active target tracking.
In particular, we introduce Active Tracking Target Network (ATTN), a unified RL policy that is capable of solving major sub-tasks of active target tracking.
arXiv Detail & Related papers (2020-06-17T22:45:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.