論文の概要: Turbocharge Speech Understanding with Pilot Inference
- arxiv url: http://arxiv.org/abs/2311.17065v3
- Date: Thu, 10 Oct 2024 20:04:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:29:04.822707
- Title: Turbocharge Speech Understanding with Pilot Inference
- Title(参考訳): パイロット推論によるターボチャージ音声理解
- Authors: Rongxiang Wang, Felix Xiaozhu Lin,
- Abstract要約: 本稿では,資源制約のあるエッジデバイス上での現代音声理解の促進を図る。
デバイス上での実行をスピードアップする、デバイス容量を超える入力をオフロードする、というハイブリッドなアプローチが必要です。
プロトタイプはPASUと呼ばれ、Armプラットフォーム上で6~8コアでテストされており、SOTAの精度が得られます。
- 参考スコア(独自算出の注目度): 0.9699101045941684
- License:
- Abstract: Modern speech understanding (SU) runs a sophisticated pipeline: ingesting streaming voice input, the pipeline executes encoder-decoder based deep neural networks repeatedly; by doing so, the pipeline generates tentative outputs (called hypotheses), and periodically scores the hypotheses. This paper sets to accelerate SU on resource-constrained edge devices. It takes a hybrid approach: to speed up on-device execution; to offload inputs that are beyond the device's capacity. While the approach is well-known, we address SU's unique challenges with novel techniques: (1) late contextualization, which executes a model's attentive encoder in parallel to the input ingestion; (2) pilot inference, which mitigates the SU pipeline's temporal load imbalance; (3) autoregression offramps, which evaluate offloading decisions based on pilot inferences and hypotheses. Our techniques are compatible with existing speech models, pipelines, and frameworks; they can be applied independently or in combination. Our prototype, called PASU, is tested on Arm platforms with 6 - 8 cores: it delivers SOTA accuracy; it reduces the end-to-end latency by 2x and reduces the offloading needs by 2x.
- Abstract(参考訳): 現代の音声理解(SU)は洗練されたパイプラインを実行する: ストリーミング音声入力を取り込み、パイプラインはエンコーダ-デコーダベースのディープニューラルネットワークを繰り返し実行し、それによってパイプラインは仮の出力(仮説と呼ばれる)を生成し、仮説を定期的にスコアする。
本稿では,資源制約エッジデバイス上でのSUの高速化を図る。
デバイス上での実行をスピードアップする、デバイス容量を超える入力をオフロードする、というハイブリッドなアプローチが必要です。
アプローチはよく知られていますが,(1)入力の取り込みと平行してモデル注意エンコーダを実行する遅延文脈化,(2)SUパイプラインの時間的負荷不均衡を緩和するパイロット推論,(3)パイロットの推論と仮説に基づいたオフロード決定を評価する自動回帰オフランプといった,SUの独特な課題に対処する。
私たちの技術は既存の音声モデル、パイプライン、フレームワークと互換性があります。
プロトタイプはPASUと呼ばれ、Armプラットフォーム上で6~8コアでテストされており、SOTAの精度が得られます。
関連論文リスト
- BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training [5.7294516069851475]
BitPipeは、大規模なモデルのトレーニングを加速するための双方向のインターリーブパイプライン並列処理である。
最新の同期手法と比較して,BitPipeはGPTスタイルとBERTスタイルのモデルのトレーニングスループットを1.05x-1.28倍向上することを示す。
論文 参考訳(メタデータ) (2024-10-25T08:08:51Z) - PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation [9.080650575731152]
PipeInferは、パイプライン化された投機的アクセラレーション技術で、トークン間のレイテンシを低減し、単一要求シナリオにおけるシステム利用を改善する。
PipeInferは、標準的な投機的推論よりも生成速度が2.15$times$改善されている。
論文 参考訳(メタデータ) (2024-07-16T14:52:02Z) - Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models [59.16287352266203]
本稿では,テキスト・ツー・イメージ(T2I)拡散モデルのための新しいプロンプトベースのプルーニング手法であるAdaptive Prompt-Tailored Pruning (APTP)を紹介する。
APTPは入力テキストプロンプトに必要な容量を決定することを学び、それをアーキテクチャコードにルーティングする。
APTPはFID、CLIP、CMMDスコアの点でシングルモデルプルーニングベースラインを上回っている。
論文 参考訳(メタデータ) (2024-06-17T19:22:04Z) - ALTO: An Efficient Network Orchestrator for Compound AI Systems [20.880866765513066]
ALTOは、言語モデルのパイプラインのような複合AIシステムを効率的に提供するネットワークオーケストレータである。
言語モデルがトークン単位で出力トークンを生成すると、ALTOは可能であればステージ間で中間出力をストリームする機会を公開する。
我々は、分散パイプラインステージインスタンス間で中間データをストリーミングする際に発生する、正確性とロードバランシングという2つの新しい課題を強調した。
論文 参考訳(メタデータ) (2024-03-07T08:30:26Z) - AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel
Training [22.107070114339038]
本稿では,エッジ協調パイプライン並列トレーニングを高速化するアクセラレーションスキームであるAccEPTを提案する。
特に,異なるデバイスにおける各レイヤの遅延を正確に推定する軽量適応遅延予測器を提案する。
数値計算の結果,提案手法により,エッジパイプラインの並列学習を最大3倍高速化できることがわかった。
論文 参考訳(メタデータ) (2023-11-10T02:18:33Z) - GPU-Accelerated WFST Beam Search Decoder for CTC-based Speech
Recognition [1.2680687621338012]
Connectionist Temporal Classification (CTC)モデルは、自動音声認識(ASR)パイプラインにおいて最先端の精度を提供する。
我々は、現在のCTCモデルと互換性のある、GPU駆動の重み付き有限状態トランスデューサ(WFST)ビームデコーダを導入する。
パイプラインのスループットを向上し、レイテンシを低減し、ストリーミング推論をサポートし、オンザフライ合成による発話固有の単語ブースティングなどの高度な機能をサポートする。
論文 参考訳(メタデータ) (2023-11-08T19:57:10Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
本稿では,タスク固有のデコーダネットワークを出力側で最適化するデコーダチューニング(DecT)を提案する。
勾配ベースの最適化により、DecTは数秒以内にトレーニングでき、サンプル毎に1つのPクエリしか必要としない。
我々は、広範囲にわたる自然言語理解実験を行い、DecTが200ドル以上のスピードアップで最先端のアルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-12-16T11:15:39Z) - UnitY: Two-pass Direct Speech-to-speech Translation with Discrete Units [64.61596752343837]
本稿では,まずテキスト表現を生成し,離散音響単位を予測する2パス直接S2STアーキテクチャであるUnitYを提案する。
第1パスデコーダのサブワード予測によりモデル性能を向上させる。
提案手法は,第2パスのスペクトルを予測しても性能が向上することを示す。
論文 参考訳(メタデータ) (2022-12-15T18:58:28Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
PartIMEは、データが継続的にストリーミングされるたびにニューラルネットワークを高速化するように設計されたライブラリです。
PartIMEは、ストリームから利用可能になった時点で、各データサンプルの処理を開始する。
オンライン学習において、PartialIMEと古典的な非並列ニューラル計算を経験的に比較するために実験が行われる。
論文 参考訳(メタデータ) (2022-10-17T14:49:14Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
そこで我々はParaformerと呼ばれる高速かつ高精度な並列トランスを提案する。
出力トークンの数を正確に予測し、隠れた変数を抽出する。
10倍以上のスピードアップで、最先端のARトランスフォーマーに匹敵するパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2022-06-16T17:24:14Z) - Streaming End-to-End ASR based on Blockwise Non-Autoregressive Models [57.20432226304683]
非自己回帰(NAR)モデリングは、音声処理においてますます注目を集めている。
エンドツーエンドのNAR音声認識システムを提案する。
提案手法は低レイテンシ条件下でのオンラインASR認識を改善する。
論文 参考訳(メタデータ) (2021-07-20T11:42:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。