論文の概要: PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation
- arxiv url: http://arxiv.org/abs/2407.11798v2
- Date: Sat, 16 Nov 2024 23:19:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:16.967229
- Title: PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation
- Title(参考訳): PipeInfer: Asynchronous Pipelined Speculationを用いたLCM推論の高速化
- Authors: Branden Butler, Sixing Yu, Arya Mazaheri, Ali Jannesari,
- Abstract要約: PipeInferは、パイプライン化された投機的アクセラレーション技術で、トークン間のレイテンシを低減し、単一要求シナリオにおけるシステム利用を改善する。
PipeInferは、標準的な投機的推論よりも生成速度が2.15$times$改善されている。
- 参考スコア(独自算出の注目度): 9.080650575731152
- License:
- Abstract: Inference of Large Language Models (LLMs) across computer clusters has become a focal point of research in recent times, with many acceleration techniques taking inspiration from CPU speculative execution. These techniques reduce bottlenecks associated with memory bandwidth, but also increase end-to-end latency per inference run, requiring high speculation acceptance rates to improve performance. Combined with a variable rate of acceptance across tasks, speculative inference techniques can result in reduced performance. Additionally, pipeline-parallel designs require many user requests to maintain maximum utilization. As a remedy, we propose PipeInfer, a pipelined speculative acceleration technique to reduce inter-token latency and improve system utilization for single-request scenarios while also improving tolerance to low speculation acceptance rates and low-bandwidth interconnects. PipeInfer exhibits up to a 2.15$\times$ improvement in generation speed over standard speculative inference. PipeInfer achieves its improvement through Continuous Asynchronous Speculation and Early Inference Cancellation, the former improving latency and generation speed by running single-token inference simultaneously with several speculative runs, while the latter improves speed and latency by skipping the computation of invalidated runs, even in the middle of inference.
- Abstract(参考訳): コンピュータクラスタ全体にわたる大規模言語モデル(LLM)の推論は、CPUの投機的実行からインスピレーションを得て、近年研究の焦点となっている。
これらの技術は、メモリ帯域幅に関連するボトルネックを軽減するとともに、推論の実行毎にエンドツーエンドのレイテンシを向上し、パフォーマンスを改善するために高い推測受け入れ率を必要とする。
タスク間での受け入れの変動率と組み合わせることで、投機的推論技術はパフォーマンスを低下させる。
さらに、パイプライン並列設計は、最大限の利用を維持するために多くのユーザ要求を必要とする。
そこで本研究では,単一要求シナリオにおける待ち時間削減とシステム利用率向上のためのパイプライン型投機アクセラレーション手法であるPipeInferを提案する。
PipeInferは、標準的な投機的推論よりも生成速度が2.15$\times$改善されている。
PipeInferはその改善を、Continuous Asynchronous SpeculationとEarly Inference Cancellationを通じて達成し、前者はシングルトークン推論といくつかの投機実行を同時に実行することで、レイテンシと生成速度を改善し、後者は推論中であっても、無効化された実行の計算をスキップすることで、速度とレイテンシを改善した。
関連論文リスト
- BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training [5.7294516069851475]
BitPipeは、大規模なモデルのトレーニングを加速するための双方向のインターリーブパイプライン並列処理である。
最新の同期手法と比較して,BitPipeはGPTスタイルとBERTスタイルのモデルのトレーニングスループットを1.05x-1.28倍向上することを示す。
論文 参考訳(メタデータ) (2024-10-25T08:08:51Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlowは、柔軟なルーティングを調整し、CPUとGPU間の効率的な専門家スケジューリングを可能にすることで、推論効率を向上させるように設計されている。
実験により、ExpertFlowは最大93.72%のGPUメモリを節約し、ベースライン法に比べて推論速度を2~10倍に向上することを示した。
論文 参考訳(メタデータ) (2024-10-23T15:24:54Z) - AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiffは、複数のデバイスにまたがるモデル並列化を可能にする、普遍的でプラグアンドプレイのアクセラレーションスキームである。
安定拡散 v2.1 では、AsyncDiff は2.7倍の速度アップと4.0倍のスピードアップを実現し、CLIPスコアの 0.38 をわずかに削減した。
我々の実験は、AsyncDiffがビデオ拡散モデルに容易に適用でき、性能を向上できることを示した。
論文 参考訳(メタデータ) (2024-06-11T03:09:37Z) - CQIL: Inference Latency Optimization with Concurrent Computation of Quasi-Independent Layers [21.91815582658188]
大規模言語モデルは、ほぼすべての自然言語処理タスクで前例のないパフォーマンスを実現している。
圧倒的な複雑さは、ユーザエクスペリエンスに悪影響を及ぼす高い推論遅延を引き起こします。
推定遅延を著しく低減するために並列に計算できる準独立層を同定することを提案する。
論文 参考訳(メタデータ) (2024-04-10T03:30:01Z) - AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel
Training [22.107070114339038]
本稿では,エッジ協調パイプライン並列トレーニングを高速化するアクセラレーションスキームであるAccEPTを提案する。
特に,異なるデバイスにおける各レイヤの遅延を正確に推定する軽量適応遅延予測器を提案する。
数値計算の結果,提案手法により,エッジパイプラインの並列学習を最大3倍高速化できることがわかった。
論文 参考訳(メタデータ) (2023-11-10T02:18:33Z) - Flover: A Temporal Fusion Framework for Efficient Autoregressive Model
Parallel Inference [3.005912820808423]
自己回帰モデル上の推論は、現在のトークンの確率分布が前のトークンに条件付けられている時間依存性を利用する。
並列に複数のリクエストを効率的に推測するための時間融合フレームワークであるFloverを提案する。
トークンレベルの並列性のオーケストレーションによって、Floverはハードウェアの最適効率を示し、システムリソースを著しく節約する。
論文 参考訳(メタデータ) (2023-05-22T20:58:09Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALPはエッジコンピューティングにおけるエッジデバイス(ED)間のシームレスなコラボレーションを設計することで推論を加速する。
実験により、分散推論HALPはVGG-16に対して1.7倍の推論加速を達成することが示された。
分散推論HALPを用いたモデル選択は,サービスの信頼性を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-11-24T19:48:30Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
共通最適化手法の「データ抽出」拡張は同期手法よりも優れた性能を示すことを示す。
具体的には、ミニバッチによる凸最適化において、データエコーは、最適統計率を維持しながら収束率の曲率に支配される部分の高速化をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-26T14:55:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。