Practical Layout-Aware Analog/Mixed-Signal Design Automation with
Bayesian Neural Networks
- URL: http://arxiv.org/abs/2311.17073v1
- Date: Mon, 27 Nov 2023 19:02:43 GMT
- Title: Practical Layout-Aware Analog/Mixed-Signal Design Automation with
Bayesian Neural Networks
- Authors: Ahmet F. Budak, Keren Zhu, and David Z. Pan
- Abstract summary: Many learning-based algorithms require thousands of simulated data points, which is impractical for expensive to simulate circuits.
We propose a learning-based algorithm that can be trained using a small amount of data and, therefore, scalable to tasks with expensive simulations.
- Score: 5.877728608070716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high simulation cost has been a bottleneck of practical
analog/mixed-signal design automation. Many learning-based algorithms require
thousands of simulated data points, which is impractical for expensive to
simulate circuits. We propose a learning-based algorithm that can be trained
using a small amount of data and, therefore, scalable to tasks with expensive
simulations. Our efficient algorithm solves the post-layout performance
optimization problem where simulations are known to be expensive. Our
comprehensive study also solves the schematic-level sizing problem. For
efficient optimization, we utilize Bayesian Neural Networks as a regression
model to approximate circuit performance. For layout-aware optimization, we
handle the problem as a multi-fidelity optimization problem and improve
efficiency by exploiting the correlations from cheaper evaluations. We present
three test cases to demonstrate the efficiency of our algorithms. Our tests
prove that the proposed approach is more efficient than conventional baselines
and state-of-the-art algorithms.
Related papers
- CircuitVAE: Efficient and Scalable Latent Circuit Optimization [22.93567682576068]
CircuitVAE is a search algorithm that embeds computation graphs in a continuous space.
Our algorithm is highly sample-efficient, yet gracefully scales to large problem instances and high sample budgets.
We find CircuitVAE can design state-of-the-art adders in a real-world chip, demonstrating that our method can outperform commercial tools in a realistic setting.
arXiv Detail & Related papers (2024-06-13T18:47:52Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Surrogate Neural Networks for Efficient Simulation-based Trajectory
Planning Optimization [28.292234483886947]
This paper presents a novel methodology that uses surrogate models in the form of neural networks to reduce the computation time of simulation-based optimization of a reference trajectory.
We find a 74% better-performing reference trajectory compared to nominal, and the numerical results clearly show a substantial reduction in computation time for designing future trajectories.
arXiv Detail & Related papers (2023-03-30T15:44:30Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
We focus on a simulation-based optimization problem of choosing the best design from the feasible space.
We formulate the sampling process as a policy searching problem and give a solution from the perspective of Reinforcement Learning (RL)
Some experiments are designed to validate the effectiveness of proposed algorithms.
arXiv Detail & Related papers (2021-10-31T09:04:23Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.