Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering
- URL: http://arxiv.org/abs/2311.17089v2
- Date: Wed, 29 May 2024 03:24:04 GMT
- Title: Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering
- Authors: Zhiwen Yan, Weng Fei Low, Yu Chen, Gim Hee Lee,
- Abstract summary: 3D Gaussians have recently emerged as a highly efficient representation for 3D reconstruction and rendering.
Despite its high rendering quality and speed at high resolutions, they both deteriorate drastically when rendered at lower resolutions or from far away camera position.
We propose a multi-scale 3D Gaussian splatting algorithm, which maintains Gaussians at different scales to represent the same scene.
Our algorithm can achieve 13%-66% PSNR and 160%-2400% rendering speed improvement at 4$times$-128$times$ scale rendering on Mip-NeRF360 dataset.
- Score: 48.41629250718956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussians have recently emerged as a highly efficient representation for 3D reconstruction and rendering. Despite its high rendering quality and speed at high resolutions, they both deteriorate drastically when rendered at lower resolutions or from far away camera position. During low resolution or far away rendering, the pixel size of the image can fall below the Nyquist frequency compared to the screen size of each splatted 3D Gaussian and leads to aliasing effect. The rendering is also drastically slowed down by the sequential alpha blending of more splatted Gaussians per pixel. To address these issues, we propose a multi-scale 3D Gaussian splatting algorithm, which maintains Gaussians at different scales to represent the same scene. Higher-resolution images are rendered with more small Gaussians, and lower-resolution images are rendered with fewer larger Gaussians. With similar training time, our algorithm can achieve 13\%-66\% PSNR and 160\%-2400\% rendering speed improvement at 4$\times$-128$\times$ scale rendering on Mip-NeRF360 dataset compared to the single scale 3D Gaussian splitting. Our code and more results are available on our project website https://jokeryan.github.io/projects/ms-gs/
Related papers
- ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings [48.72040500647568]
We present ODGS, a novelization pipeline for omnidirectional images, with geometric interpretation.
The entire pipeline is parallelized using, achieving optimization and speeds 100 times faster than NeRF-based methods.
Results show ODGS restores fine details effectively, even when reconstructing large 3D scenes.
arXiv Detail & Related papers (2024-10-28T02:45:13Z) - EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering.
Unlike recentization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering.
We show that our method is more accurate with blending issues than 3DGS and follow-up work on view rendering.
arXiv Detail & Related papers (2024-10-02T17:59:09Z) - 3D-GSW: 3D Gaussian Splatting Watermark for Protecting Copyrights in Radiance Fields [5.52538716292462]
We present a novel watermarking method for 3D Gaussian splatting.
The proposed method embeds a binary message into 3D Gaussians by fine-tuning the pre-trained 3D Gaussian splatting model.
Our experiments show that our method can embed a watermark in 3D Gaussians imperceptibly with increased capacity and robustness against attacks.
arXiv Detail & Related papers (2024-09-20T05:16:06Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
We present a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting.
We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors.
We show real-time reconstructions of a variety of large scenes and show superior performance in the realism of novel view synthesis and camera tracking accuracy.
arXiv Detail & Related papers (2024-04-30T16:54:59Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - Deblurring 3D Gaussian Splatting [7.315329140016319]
We propose a novel real-time deblurring framework, Deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP)
While Deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images.
arXiv Detail & Related papers (2024-01-01T18:23:51Z) - Splatter Image: Ultra-Fast Single-View 3D Reconstruction [67.96212093828179]
Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images.
We learn a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS.
On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works.
arXiv Detail & Related papers (2023-12-20T16:14:58Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.