論文の概要: Anonymous Jamming Detection in 5G with Bayesian Network Model Based
Inference Analysis
- arxiv url: http://arxiv.org/abs/2311.17097v1
- Date: Tue, 28 Nov 2023 07:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 00:06:54.377526
- Title: Anonymous Jamming Detection in 5G with Bayesian Network Model Based
Inference Analysis
- Title(参考訳): ベイジアンネットワークモデルに基づく推論分析による5Gの匿名ジャミング検出
- Authors: Ying Wang, Shashank Jere, Soumya Banerjee, Lingjia Liu, Sachin Shetty,
and Shehadi Dayekh
- Abstract要約: ジャミングと侵入検知は5G研究において重要であり、信頼性を維持し、ユーザエクスペリエンスの劣化を防止し、インフラの故障を避けることを目的としている。
本稿では,プロトコルスタックからの信号パラメータに基づく5Gの匿名ジャミング検出モデルを提案する。
このシステムは教師なし学習を用いて、未知の型を含むジャミングのリアルタイムかつ高精度な検出を行う。
- 参考スコア(独自算出の注目度): 21.116734582559967
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Jamming and intrusion detection are critical in 5G research, aiming to
maintain reliability, prevent user experience degradation, and avoid
infrastructure failure. This paper introduces an anonymous jamming detection
model for 5G based on signal parameters from the protocol stacks. The system
uses supervised and unsupervised learning for real-time, high-accuracy
detection of jamming, including unknown types. Supervised models reach an AUC
of 0.964 to 1, compared to LSTM models with an AUC of 0.923 to 1. However, the
need for data annotation limits the supervised approach. To address this, an
unsupervised auto-encoder-based anomaly detection is presented with an AUC of
0.987. The approach is resistant to adversarial training samples. For
transparency and domain knowledge injection, a Bayesian network-based causation
analysis is introduced.
- Abstract(参考訳): ジャミングと侵入検出は、5g研究において重要であり、信頼性の維持、ユーザエクスペリエンスの劣化の防止、インフラストラクチャ障害の回避を目的としている。
本稿では,プロトコルスタックからの信号パラメータに基づく5Gの匿名ジャミング検出モデルを提案する。
このシステムは教師なし学習を用いて、未知の型を含むジャミングのリアルタイムかつ高精度な検出を行う。
上位モデルは0.964から1のAUCに達するが、LSTMは0.923から1のAUCである。
しかし、データアノテーションの必要性は教師付きアプローチを制限する。
これを解決するために、教師なし自動エンコーダに基づく異常検出をAUC 0.987で提示する。
このアプローチは敵のトレーニングサンプルに耐性がある。
透明性とドメイン知識注入のために,ベイジアンネットワークに基づく因果解析を導入する。
関連論文リスト
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
本稿では,自己認識機構とリカレントニューラルネットワーク(RNN)に基づくオートエンコーダを統合する実験モデルを提案する。
本手法は, 時系列解析, プロセス・イン・フェイズ, および二次(I/Q)サンプルを用いて, ジャミング攻撃の可能性を示す不規則性を同定する。
モデルアーキテクチャは自己アテンション層で拡張され、RNNオートエンコーダの機能を拡張する。
論文 参考訳(メタデータ) (2024-11-05T07:01:15Z) - Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
妨害攻撃は5Gネットワークに重大なリスクをもたらす。
本研究は, CAVネットワークにおけるジャマー検出のための, 深層学習に基づく新しい手法を提案する。
提案手法は, 余剰低妨害電力の96.4%検出率を実現する。
論文 参考訳(メタデータ) (2024-03-05T04:29:31Z) - Using Kernel SHAP XAI Method to optimize the Network Anomaly Detection
Model [0.0]
異常検出とその説明は、侵入検知、不正検出、未知の攻撃検出、ネットワークトラフィック、ログなど、多くの研究領域において重要である。
ひとつのインスタンスが異常である理由や説明を特定するのは難しいですか?
XAIは、Deep Learning (DL)のような複雑なモデルのアウトプットと動作を解釈し、説明するためのツールと技術を提供する。
論文 参考訳(メタデータ) (2023-07-31T18:47:45Z) - Semi-Supervised and Long-Tailed Object Detection with CascadeMatch [91.86787064083012]
そこで我々はCascadeMatchと呼ばれる新しい擬似ラベル型検出器を提案する。
我々の検出器は、プログレッシブな信頼しきい値を持つ多段検出ヘッドを備えたカスケードネットワークアーキテクチャを備えている。
CascadeMatchは、長い尾のオブジェクト検出の処理において、既存の最先端の半教師付きアプローチを超越していることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:09:25Z) - DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature [143.5381108333212]
大規模な言語モデルからサンプリングされたテキストは、モデルのログ確率関数の負の曲率領域を占有する傾向にあることを示す。
次に、与えられたLLMから通路が生成されるかどうかを判断するための新しい曲率ベースの基準を定義する。
我々は、モデルサンプル検出のための既存のゼロショット法よりもディテクターGPTの方が識別性が高いことを発見した。
論文 参考訳(メタデータ) (2023-01-26T18:44:06Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
モデルが正しい脆弱性信号を捕捉して予測する能力を評価する。
SAR(Signal-Aware Recall)と呼ばれる新しい指標を用いて,モデルの信号認識を計測する。
その結果,90年代以降のリコールから60年代以降のリコールは,新たな指標で大幅に減少した。
論文 参考訳(メタデータ) (2020-11-25T20:05:23Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
本稿では,実時間画像とIMUセンサデータの異常度を推定するアンサンブル検出機構を提案する。
提案手法は,IEEE SP Cup-2020データセットで97.8%の精度で良好に動作する。
論文 参考訳(メタデータ) (2020-07-17T20:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。