論文の概要: Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers
- arxiv url: http://arxiv.org/abs/2409.00667v1
- Date: Sun, 1 Sep 2024 08:53:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:09:07.823027
- Title: Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers
- Title(参考訳): 対向攻撃を緩和し、摂動距離をナビゲートし、コンフォーマルな層で予測する包括的ボットネット検出
- Authors: Rahul Yumlembam, Biju Issac, Seibu Mary Jacob, Longzhi Yang,
- Abstract要約: ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
- 参考スコア(独自算出の注目度): 1.6001193161043425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges. They autonomously infect, propagate, and coordinate to conduct cybercrimes, necessitating robust detection methods. This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems. We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets. The detection algorithms are optimized using the Genetic Algorithm and Particle Swarm Optimization to obtain a baseline detection method. The Carlini & Wagner (C&W) attack and Generative Adversarial Network (GAN) generate deceptive data with subtle perturbations, targeting each feature used for classification while preserving their semantic and syntactic relationships, which ensures that the adversarial samples retain meaningfulness and realism. An in-depth analysis of the required L2 distance from the original sample for the malware sample to misclassify is performed across various iteration checkpoints, showing different levels of misclassification at different L2 distances of the Pertrub sample from the original sample. Our work delves into the vulnerability of various models, examining the transferability of adversarial examples from a Neural Network surrogate model to Tree-based algorithms. Subsequently, models that initially misclassified the perturbed samples are retrained, enhancing their resilience and detection capabilities. In the final phase, a conformal prediction layer is integrated, significantly rejecting incorrect predictions, of 58.20 % in the ISCX dataset and 98.94 % in the ISOT dataset.
- Abstract(参考訳): ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
それらは自律的に感染し、伝播し、コーディネートし、サイバー犯罪を遂行し、堅牢な検出方法を必要とする。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
検出アルゴリズムは遺伝的アルゴリズムと粒子群最適化を用いて最適化され,ベースライン検出法が得られた。
カルリーニ・アンド・ワグナー攻撃(C&W)とジェネレーティブ・逆境ネットワーク(GAN)は微妙な摂動を伴い、意味的・統語的関係を保ちながら分類に使用される各特徴をターゲットとし、敵のサンプルが意味のある意味と現実性を維持することを保証する。
元のサンプルから必要なL2距離を詳細に解析し、マルウェアサンプルからペルトルブサンプルの異なるL2距離で異なるレベルの誤分類を示すように、様々な反復チェックポイントにわたって誤分類を行う。
我々の研究は、ニューラルネットワークのサロゲートモデルからツリーベースのアルゴリズムへの敵のサンプルの転送可能性を調べることで、様々なモデルの脆弱性を掘り下げている。
その後、摂動サンプルを誤って分類したモデルが再訓練され、弾力性と検出能力が向上した。
最終段階では、共形予測層が統合され、ICCXデータセットでは58.20 %、ISOTデータセットでは98.94 %の誤予測が大幅に拒否される。
関連論文リスト
- Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
階層的フェデレートラーニング(HFL)は、車両ネットワークにおける敵または信頼できない車両の課題に直面している。
本研究では,動的車両選択とロバストな異常検出機構を統合した新しい枠組みを提案する。
提案アルゴリズムは,強烈な攻撃条件下においても顕著なレジリエンスを示す。
論文 参考訳(メタデータ) (2024-05-25T18:31:20Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
本稿では機械学習(ML)技術を用いた侵入検知システム(IDS)の解析に焦点を当てた。
機械学習モデルのトレーニングと検証に使用されるKDD CUP-'99'侵入検出データセットを分析した。
論文 参考訳(メタデータ) (2023-10-01T06:35:37Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
クラウドセンシングシステムは、不特定かつユビキタスなプロパティの上に構築されるため、さまざまな攻撃に対して脆弱である。
以前の研究では、GANベースの攻撃は実験的に設計された攻撃サンプルよりも重大な破壊力を示すことが示唆されている。
本稿では,GANモデルを統合することにより,知的に設計された不正なセンシングサービス要求を検出することを目的とする。
論文 参考訳(メタデータ) (2022-02-16T00:23:25Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
既存の生成逆数ネットワーク(GAN)は、主に実物から合成サンプルを作成するために使用される。
提案手法では,Bidirectional GAN (Bi-GAN) に基づく一級分類器として,訓練されたエンコーダ識別器を構築した。
実験結果から,提案手法はネットワーク侵入検出タスクにおいて有効であることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T23:51:11Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。