論文の概要: Feedback RoI Features Improve Aerial Object Detection
- arxiv url: http://arxiv.org/abs/2311.17129v1
- Date: Tue, 28 Nov 2023 16:09:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 23:56:24.505071
- Title: Feedback RoI Features Improve Aerial Object Detection
- Title(参考訳): 空中物体検出を改善するフィードバックRoI機能
- Authors: Botao Ren, Botian Xu, Tengyu Liu, Jingyi Wang, Zhidong Deng
- Abstract要約: 神経科学研究は、人間の視覚系が低レベルの知覚を導くために高レベルのフィードバック情報を利用することを示した。
本稿では、オブジェクト検出に類似したメカニズムを組み込むために、フィードバックマルチレベル機能エクストラクタ(Flex)を提案する。
Flexは、画像品質の変化と分類の不確実性に応じて、画像ワイドおよびインスタンスレベルのフィードバック情報に基づいて特徴選択を洗練する。
- 参考スコア(独自算出の注目度): 9.554951222327443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuroscience studies have shown that the human visual system utilizes
high-level feedback information to guide lower-level perception, enabling
adaptation to signals of different characteristics. In light of this, we
propose Feedback multi-Level feature Extractor (Flex) to incorporate a similar
mechanism for object detection. Flex refines feature selection based on
image-wise and instance-level feedback information in response to image quality
variation and classification uncertainty. Experimental results show that Flex
offers consistent improvement to a range of existing SOTA methods on the
challenging aerial object detection datasets including DOTA-v1.0, DOTA-v1.5,
and HRSC2016. Although the design originates in aerial image detection, further
experiments on MS COCO also reveal our module's efficacy in general detection
models. Quantitative and qualitative analyses indicate that the improvements
are closely related to image qualities, which match our motivation.
- Abstract(参考訳): 神経科学の研究では、人間の視覚システムは高レベルのフィードバック情報を利用して低レベルの知覚を誘導し、異なる特性の信号に適応できることが示されている。
そこで我々は,オブジェクト検出のための同様の機構を組み込むために,フィードバックマルチレベル機能エクストラクタ(Flex)を提案する。
Flexは、画像品質の変化と分類の不確実性に応じて、画像ワイドおよびインスタンスレベルのフィードバック情報に基づいて特徴選択を洗練する。
実験結果からFlexは、DOTA-v1.0、DOTA-v1.5、HRSC2016などの難易度の高いオブジェクト検出データセットに対して、既存のSOTAメソッドに一貫した改善を提供することがわかった。
この設計は空中画像検出に起源があるが、MS COCOのさらなる実験により、一般的な検出モデルにおける我々のモジュールの有効性が明らかになる。
定量的および質的な分析は、改善が画像の品質と密接に関連していることを示している。
関連論文リスト
- Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study [1.7933377464816112]
本研究の目的は、最先端の画像強調モデルの評価、水中物体検出への影響調査、検出性能向上の可能性を探ることである。
論文 参考訳(メタデータ) (2024-11-21T22:59:15Z) - Integrated Dynamic Phenological Feature for Remote Sensing Image Land Cover Change Detection [5.109855690325439]
本稿では,表現学的特徴をリモートセンシング画像CDフレームワークに統合するInPheaモデルを提案する。
4つの制約モジュールと多段階のコントラスト学習アプローチを備えた制約器を用いて,表現学的特徴の理解を支援する。
HRSCD、SECD、PSCD-Wuhanデータセットの実験は、InPheaが他のモデルより優れていることを示している。
論文 参考訳(メタデータ) (2024-08-08T01:07:28Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
製造パイプラインにおける異常検出は、産業環境の複雑さと変動性によって強化され、依然として重要な課題である。
本稿では,スマート製造パイプラインに適した解釈可能な画像ベース異常検出システムAssemAIを紹介する。
論文 参考訳(メタデータ) (2024-08-05T01:50:09Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - ReViT: Enhancing Vision Transformers Feature Diversity with Attention Residual Connections [8.372189962601077]
視覚変換器(ViT)自己保持機構は、深い層に特徴的崩壊を特徴とする。
本稿では,ViTに基づくアーキテクチャを改良するための新たな注意学習手法を提案する。
論文 参考訳(メタデータ) (2024-02-17T14:44:10Z) - Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity [55.399230250413986]
上流タスクから有害なセマンティックノイズを除去するためのQFM-IQM(Quality-Aware Feature Matching IQA Metric)を提案する。
提案手法は,8つの標準IQAデータセット上での最先端NR-IQA法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-12-11T06:50:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。