論文の概要: Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study
- arxiv url: http://arxiv.org/abs/2411.14626v2
- Date: Tue, 26 Nov 2024 03:45:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:29.482598
- Title: Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study
- Title(参考訳): 水中画像強調が物体検出性能に及ぼす影響評価:総合的研究
- Authors: Ali Awad, Ashraf Saleem, Sidike Paheding, Evan Lucas, Serein Al-Ratrout, Timothy C. Havens,
- Abstract要約: 本研究の目的は、最先端の画像強調モデルの評価、水中物体検出への影響調査、検出性能向上の可能性を探ることである。
- 参考スコア(独自算出の注目度): 1.7933377464816112
- License:
- Abstract: Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
- Abstract(参考訳): 水中画像はしばしば、視覚的品質の低下と物体検出性能の低下に悩まされる。
本研究の目的は、最先端の画像強調モデルの評価、水中物体検出への影響調査、検出性能向上の可能性を探ることである。
そこで,本論文では,海面画像強調を対象とする代表的な画像強調モデルを選択し,2つの最新のデータセットに別々に適用した。
1)実世界水中物体検出データセット(RUOD)と
2)混在する水中植物検出データセット(CUPDD)
次に,拡張画像の質的,定量的な分析を行い,原画像と拡張画像の品質分布を比較するための品質指標(Q-index)を開発した。
その後、元の画像セットと拡張画像セットで個別にトレーニング・テストされた複数のYOLO-NAS検出モデルの性能を比較した。
そこで我々は,拡張指標と検出性能の関係を検討するための相関研究を行った。
また, 検出性能が向上する事例や, 人体アノテータによる欠損物体の発見例など, 訓練された検出器からの推測結果も分析した。
本研究は, 一般的に検出性能は低下するが, 検出性能の向上やより正確な人的アノテーションの活用が可能であることを示唆している。
関連論文リスト
- Separated Attention: An Improved Cycle GAN Based Under Water Image Enhancement Method [0.0]
我々は、損失関数を改良した最先端のサイクルGANモデルのサイクル一貫した学習手法を利用した。
我々は、ベンチマークしたEnhancing Underwater Visual Perceptionデータセット上で、修正された損失関数を用いてCycle GANモデルを訓練した。
アップグレードされた画像は、従来のモデルによるより良い結果を提供し、さらに水中ナビゲーション、ポーズ推定、サリエンシ予測、物体の検出と追跡を行う。
論文 参考訳(メタデータ) (2024-04-11T11:12:06Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond [52.27796682972484]
既存の水中画像強調法は, 画像品質の向上に重点を置いており, 実践への影響を無視している。
本稿では,検出駆動型水中画像強調のための正規化フローであるWaterFlowを提案する。
微分可能性や解釈可能性を考慮すると、事前をデータ駆動マッピング手法に組み込む。
論文 参考訳(メタデータ) (2023-08-02T04:17:35Z) - UIF: An Objective Quality Assessment for Underwater Image Enhancement [17.145844358253164]
水中画像の客観的評価のための水中画像忠実度(UIF)指標を提案する。
これらの画像の統計的特徴を利用して,自然度,鋭度,構造的特徴を抽出する。
実験の結果,提案したUIFは水中および汎用画像品質指標より優れていたことが確認された。
論文 参考訳(メタデータ) (2022-05-19T08:43:47Z) - Deep Image Destruction: A Comprehensive Study on Vulnerability of Deep
Image-to-Image Models against Adversarial Attacks [104.8737334237993]
本稿では,敵対的攻撃に対する深部画像対画像モデルの脆弱性に関する包括的調査を行う。
一般的な5つの画像処理タスクでは、さまざまな観点から16の深いモデルが分析される。
画像分類タスクとは異なり、画像間タスクの性能劣化は様々な要因によって大きく異なることが示される。
論文 参考訳(メタデータ) (2021-04-30T14:20:33Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - A Generative Approach for Detection-driven Underwater Image Enhancement [19.957923413999673]
本稿では,GAN(Generative Adversarial Network)に基づく画像強調とダイバー検出タスクを統合したモデルを提案する。
提案手法はGAN目的関数を再構成し,事前に訓練されたダイバーディテクタの情報を含む。
我々は,最先端のダイバー検出器を用いて,スキューバダイバーの大規模データセット上でネットワークをトレーニングし,海洋探査から収集した画像上でその有用性を示す。
論文 参考訳(メタデータ) (2020-12-10T21:33:12Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
本稿では,2つの知覚強調モデルを提案する。
トレーニングデータの欠如により, 物理的先行とデータ駆動的手がかりを融合したハイブリッド水中画像合成モデルが提案され, トレーニングデータを合成する。
実験結果から,提案手法は実環境および合成水中データセット上でのいくつかの最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-08-21T22:11:34Z) - A Benchmark dataset for both underwater image enhancement and underwater
object detection [34.25890702670983]
境界ボックスアノテーションと高品質な参照画像の両方を用いた大規模水中物体検出データセットを提供する。
OUCデータセットは、水中物体検出タスクにおける水中画像強調アルゴリズムの影響を包括的に研究するためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2020-06-29T03:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。