論文の概要: Deployment of a Robust and Explainable Mortality Prediction Model: The
COVID-19 Pandemic and Beyond
- arxiv url: http://arxiv.org/abs/2311.17133v1
- Date: Tue, 28 Nov 2023 18:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 23:39:10.008103
- Title: Deployment of a Robust and Explainable Mortality Prediction Model: The
COVID-19 Pandemic and Beyond
- Title(参考訳): ロバストで説明可能な死亡予測モデルの展開:COVID-19パンデミックとそれ以上
- Authors: Jacob R. Epifano, Stephen Glass, Ravi P. Ramachandran, Sharad Patel,
Aaron J. Masino, Ghulam Rasool
- Abstract要約: 本研究では、新型コロナウイルスのパンデミック以降の死亡率予測におけるAIモデルの有効性、説明可能性、堅牢性について検討した。
- 参考スコア(独自算出の注目度): 0.59374762912328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigated the performance, explainability, and robustness of
deployed artificial intelligence (AI) models in predicting mortality during the
COVID-19 pandemic and beyond. The first study of its kind, we found that
Bayesian Neural Networks (BNNs) and intelligent training techniques allowed our
models to maintain performance amidst significant data shifts. Our results
emphasize the importance of developing robust AI models capable of matching or
surpassing clinician predictions, even under challenging conditions. Our
exploration of model explainability revealed that stochastic models generate
more diverse and personalized explanations thereby highlighting the need for AI
models that provide detailed and individualized insights in real-world clinical
settings. Furthermore, we underscored the importance of quantifying uncertainty
in AI models which enables clinicians to make better-informed decisions based
on reliable predictions. Our study advocates for prioritizing implementation
science in AI research for healthcare and ensuring that AI solutions are
practical, beneficial, and sustainable in real-world clinical environments. By
addressing unique challenges and complexities in healthcare settings,
researchers can develop AI models that effectively improve clinical practice
and patient outcomes.
- Abstract(参考訳): 本研究では、新型コロナウイルスのパンデミック以降の死亡率予測におけるAIモデルの有効性、説明可能性、堅牢性について検討した。
このタイプの最初の研究で、ベイズニューラルネットワーク(BNN)とインテリジェントトレーニング技術によって、重要なデータシフトの中で、我々のモデルがパフォーマンスを維持することができることがわかった。
本研究は, 困難な状況下でも臨床予測に適合し, かつ超越することができる頑健なaiモデルを開発することの重要性を強調する。
モデル説明可能性の探索により、確率的モデルはより多様でパーソナライズされた説明を生成し、現実の臨床環境で詳細な個別化された洞察を提供するAIモデルの必要性を強調した。
さらに,AIモデルにおける不確実性の定量化の重要性を強調し,信頼性の高い予測に基づいて,臨床医がより良いインフォームド決定を行えるようにした。
我々の研究は、医療のためのAI研究における実装科学の優先順位付けを提唱し、現実の臨床環境でAIソリューションが実用的で有益で持続可能であることを保証する。
医療設定における固有の課題や複雑さに対処することで、研究者は臨床実践と患者の成果を効果的に改善するAIモデルを開発することができる。
関連論文リスト
- Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
我々は、診断予測のための説明可能なモデルを開発するために、神経象徴的手法、特に論理ニューラルネットワーク(LNN)を用いている。
私たちのモデル、特に$M_textmulti-pathway$と$M_textcomprehensive$は、従来のモデルよりも優れたパフォーマンスを示します。
これらの知見は、医療AI応用における精度と説明可能性のギャップを埋める神経象徴的アプローチの可能性を強調している。
論文 参考訳(メタデータ) (2024-10-01T22:47:24Z) - Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability [1.90365714903665]
本研究では,Bayesian Kolmogorov Arnold Networks(BKANs)と呼ばれる新しいフレームワークを提案する。
BKANはコルモゴロフ・アーノルドネットワークの表現能力とベイズ推定を組み合わせたものである。
提案手法は,予測信頼度と決定境界に関する有用な知見を提供し,予測精度の観点から従来のディープラーニングモデルより優れている。
論文 参考訳(メタデータ) (2024-08-05T10:38:34Z) - Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations [12.73011921253]
本稿では、医療技術評価(HTA)のための生成人工知能(AI)と大規模言語モデル(LLM)を含む基礎モデルについて紹介する。
本研究は, 4つの重要な領域, 合成証拠, 証拠生成, 臨床試験, 経済モデリングにおける応用について検討する。
約束にもかかわらず、これらの技術は急速に改善されているものの、まだ初期段階にあり、HTAへの適用には慎重な評価が引き続き必要である。
論文 参考訳(メタデータ) (2024-07-09T09:25:27Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - GENIE-NF-AI: Identifying Neurofibromatosis Tumors using Liquid Neural
Network (LTC) trained on AACR GENIE Datasets [0.0]
神経線維腫症を診断するための解釈可能なAIアプローチを提案する。
提案手法は99.86%の精度で既存モデルより優れていた。
論文 参考訳(メタデータ) (2023-04-26T10:28:59Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
本研究は、心不全生存予測モデルの説明可能性分析と評価について述べる。
このモデルでは、最高のアンサンブルツリーアルゴリズムを選択できるデータワークフローパイプラインと、最高の機能選択テクニックが採用されている。
本論文の主な貢献は、精度-説明可能性バランスに基づいて、HF生存率の最良の予測モデルを選択するための説明可能性駆動型アプローチである。
論文 参考訳(メタデータ) (2021-08-20T09:03:26Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。