論文の概要: Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations
- arxiv url: http://arxiv.org/abs/2407.11054v3
- Date: Sat, 21 Sep 2024 19:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:21:36.815308
- Title: Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations
- Title(参考訳): 医療技術評価のためのジェネレーティブAI : 機会,課題,政策的考察
- Authors: Rachael Fleurence, Jiang Bian, Xiaoyan Wang, Hua Xu, Dalia Dawoud, Mitch Higashi, Jagpreet Chhatwal,
- Abstract要約: 本稿では、医療技術評価(HTA)のための生成人工知能(AI)と大規模言語モデル(LLM)を含む基礎モデルについて紹介する。
本研究は, 4つの重要な領域, 合成証拠, 証拠生成, 臨床試験, 経済モデリングにおける応用について検討する。
約束にもかかわらず、これらの技術は急速に改善されているものの、まだ初期段階にあり、HTAへの適用には慎重な評価が引き続き必要である。
- 参考スコア(独自算出の注目度): 12.73011921253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review introduces the transformative potential of generative Artificial Intelligence (AI) and foundation models, including large language models (LLMs), for health technology assessment (HTA). We explore their applications in four critical areas, evidence synthesis, evidence generation, clinical trials and economic modeling: (1) Evidence synthesis: Generative AI has the potential to assist in automating literature reviews and meta-analyses by proposing search terms, screening abstracts, and extracting data with notable accuracy; (2) Evidence generation: These models can potentially facilitate automating the process and analyze the increasingly available large collections of real-world data (RWD), including unstructured clinical notes and imaging, enhancing the speed and quality of real-world evidence (RWE) generation; (3) Clinical trials: Generative AI can be used to optimize trial design, improve patient matching, and manage trial data more efficiently; and (4) Economic modeling: Generative AI can also aid in the development of health economic models, from conceptualization to validation, thus streamlining the overall HTA process. Despite their promise, these technologies, while rapidly improving, are still nascent and continued careful evaluation in their applications to HTA is required. To ensure their responsible use and implementation, both developers and users of research incorporating these tools, should familiarize themselves with their current limitations, including the issues related to scientific validity, risk of bias, and consider equity and ethical implications. We also surveyed the current policy landscape and provide suggestions for HTA agencies on responsibly integrating generative AI into their workflows, emphasizing the importance of human oversight and the fast-evolving nature of these tools.
- Abstract(参考訳): 本稿では,医療技術評価(HTA)のための生成人工知能(AI)と,大規模言語モデル(LLM)を含む基礎モデルについて紹介する。
1)エビデンス・シンセサイザー、エビデンス・ジェネレーション、臨床試験、経済モデリングの応用を探る:(1)エビデンス・シンセサイザー: 生成AIは、文献レビューとメタアナリシスの自動化を支援する能力を持ち、検索用語の提案、要約のスクリーニング、顕著な精度でデータの抽出を行う。(2)エビデンス・ジェネレーション: これらのモデルにより、プロセスの自動化と、非構造化された臨床ノートや画像を含む利用可能な膨大な実世界のデータ(RWD)の収集、実世界のエビデンス(RWE)生成のスピードと品質の向上、(3)臨床試験: 生成AIは、治験設計を最適化し、患者マッチングを改善し、治験データをより効率的に管理するために使用できる;(4)エビデンス・モデリング: 経済モデルの開発にも役立つ。
約束にもかかわらず、これらの技術は急速に改善されているものの、まだ初期段階にあり、HTAへの適用には慎重な評価が引き続き必要である。
責任ある使用と実施を保証するため、これらのツールを取り入れた研究の開発者と利用者は、科学的妥当性、偏見のリスク、公平性や倫理的含意など、現在の制限に精通するべきである。
我々はまた、現在の政策状況を調査し、HTAエージェンシーに対して、生成AIを彼らのワークフローに責任を持って統合することを提案し、人間の監視の重要性とこれらのツールの急速な進化の性質を強調した。
関連論文リスト
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
ジェネレーティブAIは、健康経済学と成果研究(HEOR)において大きな可能性を秘めている
生成AIは、HEORに大きな可能性を示し、効率性、生産性を高め、複雑な課題に対する新しいソリューションを提供する。
ファウンデーションモデルは複雑なタスクを自動化する上で有望だが、科学的信頼性、バイアス、解釈可能性、ワークフローの統合には課題が残っている。
論文 参考訳(メタデータ) (2024-10-26T15:42:50Z) - DREAMS: A python framework to train deep learning models with model card reporting for medical and health applications [7.2934799091933815]
本稿では,脳波データ処理,モデルトレーニング,レポート生成に適した総合的なディープラーニングフレームワークを提案する。
AI開発者によってさらに適応され、開発されるように構築されているが、モデルカードを通じて、開発者と臨床医の両方が使用する結果と具体的な情報を報告することができる。
論文 参考訳(メタデータ) (2024-09-26T13:12:13Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
ファンデーションモデル開発は、急速に成長するコントリビュータ、科学者、アプリケーションを引き付けている。
責任ある開発プラクティスを形成するために、我々はFoundation Model Development Cheatsheetを紹介します。
論文 参考訳(メタデータ) (2024-06-24T15:55:49Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Deployment of a Robust and Explainable Mortality Prediction Model: The
COVID-19 Pandemic and Beyond [0.59374762912328]
本研究では、新型コロナウイルスのパンデミック以降の死亡率予測におけるAIモデルの有効性、説明可能性、堅牢性について検討した。
論文 参考訳(メタデータ) (2023-11-28T18:15:53Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Leveraging Generative AI Models for Synthetic Data Generation in
Healthcare: Balancing Research and Privacy [0.0]
GANやVAEといった生成AIモデルは、貴重なデータアクセスと患者のプライバシ保護のバランスをとるための、有望なソリューションを提供する。
本稿では,現実的な匿名化された患者データを作成するための生成AIモデルについて検討する。
論文 参考訳(メタデータ) (2023-05-09T08:12:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。