Bases for optimising stabiliser decompositions of quantum states
- URL: http://arxiv.org/abs/2311.17384v2
- Date: Wed, 29 May 2024 18:29:38 GMT
- Title: Bases for optimising stabiliser decompositions of quantum states
- Authors: Nadish de Silva, Ming Yin, Sergii Strelchuk,
- Abstract summary: We introduce and study the vector space of linear dependencies of $n$-qubit stabiliser states.
We construct elegant bases of linear dependencies of constant size three.
We use them to explicitly compute the stabiliser extent of states of more qubits than is feasible with existing techniques.
- Score: 14.947570152519281
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Stabiliser states play a central role in the theory of quantum computation. For example, they are used to encode computational basis states in the most common quantum error correction schemes. Arbitrary quantum states admit many stabiliser decompositions: ways of being expressed as a superposition of stabiliser states. Understanding the structure of stabiliser decompositions has significant applications in verifying and simulating near-term quantum computers. We introduce and study the vector space of linear dependencies of $n$-qubit stabiliser states. These spaces have canonical bases containing vectors whose size grows exponentially in $n$. We construct elegant bases of linear dependencies of constant size three. Critically, our sparse bases can be computed without first compiling a dictionary of all $n$-qubit stabiliser states. We utilise them to explicitly compute the stabiliser extent of states of more qubits than is feasible with existing techniques. Finally, we delineate future applications to improving theoretical bounds on the stabiliser rank of magic states.
Related papers
- Improved bounds for testing low stabilizer complexity states [6.169364905804677]
We improve the state-of-the-art parameters for the tolerant testing of stabilizer states.
We also study the problem of testing low stabilizer rank states.
arXiv Detail & Related papers (2024-10-31T17:56:57Z) - Bipartite entanglement of noisy stabilizer states through the lens of stabilizer codes [8.59730790789283]
We show that the spectra of the corresponding reduced states can be expressed in terms of properties of an associated stabilizer code.
We find stabilizer states that are resilient against noise, allowing for more robust entanglement distribution in near-term quantum networks.
arXiv Detail & Related papers (2024-06-04T15:46:51Z) - Stabilizer ground states for simulating quantum many-body physics: theory, algorithms, and applications [0.5735035463793009]
We apply stabilizer states to tackle quantum many-body ground state problems.
We develop an exact and linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians.
arXiv Detail & Related papers (2024-03-13T11:54:25Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Improved Graph Formalism for Quantum Circuit Simulation [77.34726150561087]
We show how to efficiently simplify stabilizer states to canonical form.
We characterize all linearly dependent triplets, revealing symmetries in the inner products.
Using our novel controlled-Pauli $Z$ algorithm, we improve runtime for inner product computation from $O(n3)$ to $O(nd2)$ where $d$ is the maximum degree of the graph.
arXiv Detail & Related papers (2021-09-20T05:56:25Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Stabilizer extent is not multiplicative [1.491109220586182]
Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer.
An important open problem is to decide whether the extent is multiplicative under tensor products.
arXiv Detail & Related papers (2020-07-08T18:41:59Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Efficient simulatability of continuous-variable circuits with large
Wigner negativity [62.997667081978825]
Wigner negativity is known to be a necessary resource for computational advantage in several quantum-computing architectures.
We identify vast families of circuits that display large, possibly unbounded, Wigner negativity, and yet are classically efficiently simulatable.
We derive our results by establishing a link between the simulatability of high-dimensional discrete-variable quantum circuits and bosonic codes.
arXiv Detail & Related papers (2020-05-25T11:03:42Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.