論文の概要: MMA-Diffusion: MultiModal Attack on Diffusion Models
- arxiv url: http://arxiv.org/abs/2311.17516v2
- Date: Thu, 14 Dec 2023 15:28:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 03:46:23.200349
- Title: MMA-Diffusion: MultiModal Attack on Diffusion Models
- Title(参考訳): MMA拡散:拡散モデルに対するマルチモーダル攻撃
- Authors: Yijun Yang, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu, Qiang Xu
- Abstract要約: MMA-Diffusionは、T2Iモデルのセキュリティに顕著で現実的な脅威をもたらす。
オープンソースモデルと商用オンラインサービスの両方において、現在の防御措置を回避している。
- 参考スコア(独自算出の注目度): 34.626201026659054
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, Text-to-Image (T2I) models have seen remarkable
advancements, gaining widespread adoption. However, this progress has
inadvertently opened avenues for potential misuse, particularly in generating
inappropriate or Not-Safe-For-Work (NSFW) content. Our work introduces
MMA-Diffusion, a framework that presents a significant and realistic threat to
the security of T2I models by effectively circumventing current defensive
measures in both open-source models and commercial online services. Unlike
previous approaches, MMA-Diffusion leverages both textual and visual modalities
to bypass safeguards like prompt filters and post-hoc safety checkers, thus
exposing and highlighting the vulnerabilities in existing defense mechanisms.
- Abstract(参考訳): 近年,テキスト・ツー・イメージ(T2I)モデルは顕著な進歩を遂げ,広く普及している。
しかし、この進歩は、特に不適切な、あるいは安全でない(NSFW)コンテンツを生成する際の、潜在的な誤用に対する不注意な道を開いた。
MMA-Diffusionは,オープンソースモデルと商用オンラインサービスの両方において,現在の防御対策を効果的に回避し,T2Iモデルのセキュリティに対する顕著かつ現実的な脅威を示すフレームワークである。
従来のアプローチとは異なり、mma-diffusionはテキストと視覚の両方を利用してプロンプトフィルタやポストホック安全チェッカーなどのセーフガードをバイパスし、既存の防御機構の脆弱性を露呈し、強調する。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models [20.37481116837779]
AdvI2Iは、入力画像を操作して拡散モデルを誘導し、NSFWコンテンツを生成する新しいフレームワークである。
ジェネレータを最適化して敵画像を作成することで、AdvI2Iは既存の防御機構を回避できる。
本稿では,AdvI2IとAdvI2I-Adaptiveの両方が,現行の安全対策を効果的に回避可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T19:15:06Z) - Direct Unlearning Optimization for Robust and Safe Text-to-Image Models [29.866192834825572]
モデルが潜在的に有害なコンテンツを生成する能力を取り除くために、未学習の技術が開発されている。
これらの手法は敵の攻撃によって容易に回避され、生成した画像の安全性を確保するには信頼性が低い。
T2IモデルからNot Safe For Work(NSFW)コンテンツを除去するための新しいフレームワークであるDirect Unlearning Optimization (DUO)を提案する。
論文 参考訳(メタデータ) (2024-07-17T08:19:11Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - GuardT2I: Defending Text-to-Image Models from Adversarial Prompts [16.317849859000074]
GuardT2Iは、T2Iモデルの敵のプロンプトに対する堅牢性を高めるための生成的アプローチを採用する、新しいモデレーションフレームワークである。
実験の結果、GardetT2IはOpenAI-ModerationやMicrosoft Azure Moderatorといった主要な商用ソリューションよりも優れています。
論文 参考訳(メタデータ) (2024-03-03T09:04:34Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts [63.61248884015162]
テキストと画像の拡散モデルは、高品質なコンテンツ生成において顕著な能力を示している。
本研究では,拡散モデルの問題を自動検出するツールとして,Prompting4 Debugging (P4D)を提案する。
この結果から,従来のセーフプロンプトベンチマークの約半数は,本来 "セーフ" と考えられていたので,実際に多くのデプロイされた安全機構を回避できることがわかった。
論文 参考訳(メタデータ) (2023-09-12T11:19:36Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。