論文の概要: Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
- arxiv url: http://arxiv.org/abs/2309.06135v2
- Date: Sat, 8 Jun 2024 05:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:19:21.056901
- Title: Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
- Title(参考訳): Prompting4Debugging:問題プロンプトの発見によるテキストと画像の拡散モデルの再結合
- Authors: Zhi-Yi Chin, Chieh-Ming Jiang, Ching-Chun Huang, Pin-Yu Chen, Wei-Chen Chiu,
- Abstract要約: テキストと画像の拡散モデルは、高品質なコンテンツ生成において顕著な能力を示している。
本研究では,拡散モデルの問題を自動検出するツールとして,Prompting4 Debugging (P4D)を提案する。
この結果から,従来のセーフプロンプトベンチマークの約半数は,本来 "セーフ" と考えられていたので,実際に多くのデプロイされた安全機構を回避できることがわかった。
- 参考スコア(独自算出の注目度): 63.61248884015162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
- Abstract(参考訳): テキストから画像への拡散モデル、例えば安定拡散(SD)は、近年、高品質なコンテンツ生成において顕著な能力を示し、近年の変革的AIの波の代表者の一人となっている。
にもかかわらず、このような進歩は、この生成技術の誤用、特に著作権付きまたはNSFW(つまり職場では安全ではない)画像の制作に対する懸念が強まっている。
不適切なイメージやプロンプトをフィルタリングしたり、モデルファインチューニングによって望ましくない概念やスタイルを除去する努力が続けられてきたが、これらの安全メカニズムの信頼性は未解明のままである。
本研究では,デプロイされた安全機構の信頼性をテストするために拡散モデルに問題のあるプロンプトを自動的に検出するデバッグツールとして,Prompting4Debugging (P4D)を提案する。
安全機構を持つSDモデルの新たな脆弱性を明らかにする上で,我々のP4Dツールの有効性を実証する。
特に,従来の安全プロンプトベンチマークの約半数は,概念除去,否定的プロンプト,安全ガイダンスなど,多数のデプロイされた安全メカニズムを回避して,実際に操作可能であることを示す。
以上の結果から, 包括的テストがなければ, 限られた安全なプロンプトベンチマークの評価は, テキスト・ツー・イメージ・モデルに誤った安全性をもたらす可能性が示唆された。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction [49.60774626839712]
マルチモーダル生成モデルのトレーニングは、ユーザを有害で安全でない、議論の余地のない、あるいは文化的に不適切なアウトプットに晒すことができる。
安全コンテクストの埋め込みと、より安全な画像を生成するための二重再構成プロセスを活用するモジュール型動的ソリューションを提案する。
我々は、モデル安全性の制御可能なバリエーションを提供しながら、安全な画像生成ベンチマークの最先端結果を達成する。
論文 参考訳(メタデータ) (2024-11-21T09:47:13Z) - AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models [20.37481116837779]
AdvI2Iは、入力画像を操作して拡散モデルを誘導し、NSFWコンテンツを生成する新しいフレームワークである。
ジェネレータを最適化して敵画像を作成することで、AdvI2Iは既存の防御機構を回避できる。
本稿では,AdvI2IとAdvI2I-Adaptiveの両方が,現行の安全対策を効果的に回避可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T19:15:06Z) - SteerDiff: Steering towards Safe Text-to-Image Diffusion Models [5.781285400461636]
テキスト・ツー・イメージ(T2I)拡散モデルは不適切なコンテンツを生成するために誤用することができる。
本稿では,ユーザ入力と拡散モデルの間の仲介として機能する軽量適応モジュールであるSteerDiffを紹介する。
提案手法の有効性を評価するために,様々な概念の未学習タスクに対して広範な実験を行う。
論文 参考訳(メタデータ) (2024-10-03T17:34:55Z) - EIUP: A Training-Free Approach to Erase Non-Compliant Concepts Conditioned on Implicit Unsafe Prompts [32.590822043053734]
非有毒なテキストは、暗黙の安全でないプロンプトと呼ばれる非準拠のイメージを生成するリスクを伴っている。
我々は、非準拠の概念を消去プロンプトに組み込む、単純で効果的なアプローチを提案する。
本手法は,画像の忠実度を高いスコアで評価しながら,優れた消去効果を示す。
論文 参考訳(メタデータ) (2024-08-02T05:17:14Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - SurrogatePrompt: Bypassing the Safety Filter of Text-to-Image Models via Substitution [21.93748586123046]
我々は、Midjourneyに対する最初の即時攻撃を開発し、その結果、豊富なNSFW画像が生成される。
我々のフレームワークであるSurrogatePromptは、大規模言語モデル、画像からテキスト、画像から画像へのモジュールを利用して、攻撃プロンプトを体系的に生成する。
その結果、Midjourneyのプロプライエタリな安全フィルタを攻撃プロンプトでバイパスして88%の成功率を明らかにした。
論文 参考訳(メタデータ) (2023-09-25T13:20:15Z) - FLIRT: Feedback Loop In-context Red Teaming [79.63896510559357]
ブラックボックスモデルを評価し,その脆弱性を明らかにする自動レッドチーム化フレームワークを提案する。
私たちのフレームワークは、レッドチームモデルに対するフィードバックループでコンテキスト内学習を使用し、それらを安全でないコンテンツ生成にトリガーします。
論文 参考訳(メタデータ) (2023-08-08T14:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。