Efficient Computation of Sparse and Robust Maximum Association Estimators
- URL: http://arxiv.org/abs/2311.17563v3
- Date: Wed, 29 Jan 2025 16:49:22 GMT
- Title: Efficient Computation of Sparse and Robust Maximum Association Estimators
- Authors: Pia Pfeiffer, Andreas Alfons, Peter Filzmoser,
- Abstract summary: Robust statistical estimators offer empirical precision but are often computationally challenging in high-dimensional sparse settings.
Modern association estimator techniques are utilized for outliers without imposing resilience against other robust methods.
- Score: 0.4588028371034406
- License:
- Abstract: Robust statistical estimators offer resilience against outliers but are often computationally challenging, particularly in high-dimensional sparse settings. Modern optimization techniques are utilized for robust sparse association estimators without imposing constraints on the covariance structure. The approach splits the problem into a robust estimation phase, followed by optimization of a decoupled, biconvex problem to derive the sparse canonical vectors. An augmented Lagrangian algorithm, combined with a modified adaptive gradient descent method, induces sparsity through simultaneous updates of both canonical vectors. Results demonstrate improved precision over existing methods, with high-dimensional empirical examples illustrating the effectiveness of this approach. The methodology can also be extended to other robust sparse estimators.
Related papers
- WENDy for Nonlinear-in-Parameters ODEs [1.9573380763700712]
The Weak-form Estimation of Non-linear Dynamics (WEN) is extended to accommodate systems of ordinary differential equations that are nonlinear-ins.
We present results on a suite of benchmark systems to demonstrate the practical benefits of our approach.
arXiv Detail & Related papers (2025-02-13T01:40:21Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
We show that the Nystrom method consistently achieves comparable or even superior performance to other approaches.
The proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations.
arXiv Detail & Related papers (2023-02-20T02:37:26Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Robust Regression via Model Based Methods [13.300549123177705]
We propose an algorithm inspired by so-called model-based optimization (MBO) [35, 36], which replaces a non-objective with a convex model function.
We apply this to robust regression, proposing SADM, a function of the Online Alternating Direction Method of Multipliers (OOADM) [50] to solve the inner optimization in MBO.
Finally, we demonstrate experimentally (a) the robustness of l_p norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with methods on autoencoders and multi-target regression.
arXiv Detail & Related papers (2021-06-20T21:45:35Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.