Gaussian Shell Maps for Efficient 3D Human Generation
- URL: http://arxiv.org/abs/2311.17857v1
- Date: Wed, 29 Nov 2023 18:04:07 GMT
- Title: Gaussian Shell Maps for Efficient 3D Human Generation
- Authors: Rameen Abdal, Wang Yifan, Zifan Shi, Yinghao Xu, Ryan Po, Zhengfei
Kuang, Qifeng Chen, Dit-Yan Yeung, Gordon Wetzstein
- Abstract summary: 3D generative adversarial networks (GANs) have demonstrated state-of-the-art (SOTA) quality and diversity for generated assets.
Current 3D GAN architectures, however, rely on volume representations, which are slow to render, thereby hampering the GAN training and requiring multi-view-inconsistent 2D upsamplers.
- Score: 96.25056237689988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient generation of 3D digital humans is important in several industries,
including virtual reality, social media, and cinematic production. 3D
generative adversarial networks (GANs) have demonstrated state-of-the-art
(SOTA) quality and diversity for generated assets. Current 3D GAN
architectures, however, typically rely on volume representations, which are
slow to render, thereby hampering the GAN training and requiring
multi-view-inconsistent 2D upsamplers. Here, we introduce Gaussian Shell Maps
(GSMs) as a framework that connects SOTA generator network architectures with
emerging 3D Gaussian rendering primitives using an articulable multi
shell--based scaffold. In this setting, a CNN generates a 3D texture stack with
features that are mapped to the shells. The latter represent inflated and
deflated versions of a template surface of a digital human in a canonical body
pose. Instead of rasterizing the shells directly, we sample 3D Gaussians on the
shells whose attributes are encoded in the texture features. These Gaussians
are efficiently and differentiably rendered. The ability to articulate the
shells is important during GAN training and, at inference time, to deform a
body into arbitrary user-defined poses. Our efficient rendering scheme bypasses
the need for view-inconsistent upsamplers and achieves high-quality multi-view
consistent renderings at a native resolution of $512 \times 512$ pixels. We
demonstrate that GSMs successfully generate 3D humans when trained on
single-view datasets, including SHHQ and DeepFashion.
Related papers
- ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
The creation of high-quality 3D assets is paramount for applications in digital heritage, entertainment, and robotics.
Traditionally, this process necessitates skilled professionals and specialized software for modeling.
We introduce a novel 3D content creation framework, which generates 3D textures efficiently.
arXiv Detail & Related papers (2024-07-26T18:26:01Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - Efficient 3D Articulated Human Generation with Layered Surface Volumes [131.3802971483426]
We introduce layered surface volumes (LSVs) as a new 3D object representation for articulated digital humans.
LSVs represent a human body using multiple textured layers around a conventional template.
They exhibit exceptional efficiency in GAN settings, where a 2D generator learns to synthesize the RGBA textures for the individual layers.
arXiv Detail & Related papers (2023-07-11T17:50:02Z) - Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using
Pixel-aligned Reconstruction Priors [56.192682114114724]
Get3DHuman is a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes.
Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors.
arXiv Detail & Related papers (2023-02-02T15:37:46Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.