Echoes in the Noise: Posterior Samples of Faint Galaxy Surface
Brightness Profiles with Score-Based Likelihoods and Priors
- URL: http://arxiv.org/abs/2311.18002v1
- Date: Wed, 29 Nov 2023 19:00:03 GMT
- Title: Echoes in the Noise: Posterior Samples of Faint Galaxy Surface
Brightness Profiles with Score-Based Likelihoods and Priors
- Authors: Alexandre Adam, Connor Stone, Connor Bottrell, Ronan Legin, Yashar
Hezaveh and Laurence Perreault-Levasseur
- Abstract summary: We present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution.
The method, when applied to minimally processed emphHubble Space Telescope (emphHST) data, recovers structures which have otherwise only become visible in next-generation emphJames Webb Space Telescope (emphJWST) imaging.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Examining the detailed structure of galaxy populations provides valuable
insights into their formation and evolution mechanisms. Significant barriers to
such analysis are the non-trivial noise properties of real astronomical images
and the point spread function (PSF) which blurs structure. Here we present a
framework which combines recent advances in score-based likelihood
characterization and diffusion model priors to perform a Bayesian analysis of
image deconvolution. The method, when applied to minimally processed
\emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have
otherwise only become visible in next-generation \emph{James Webb Space
Telescope} (\emph{JWST}) imaging.
Related papers
- A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations [37.845442465099396]
This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach.
It integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation.
The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
arXiv Detail & Related papers (2025-03-21T13:07:55Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Bayesian Deconvolution of Astronomical Images with Diffusion Models: Quantifying Prior-Driven Features in Reconstructions [40.13294159814764]
Deconvolution of astronomical images is a key aspect of recovering the intrinsic properties of celestial objects.
This paper explores the use of diffusion models (DMs) and the Diffusion Posterior Sampling (DPS) algorithm to solve this inverse problem task.
arXiv Detail & Related papers (2024-11-28T14:00:00Z) - Ground-based image deconvolution with Swin Transformer UNet [2.41675832913699]
We introduce a two-step deconvolution framework using a Swin Transformer architecture.
Our study reveals that the deep learning-based solution introduces a bias, constraining the scope of scientific analysis.
We propose a novel third step relying on the active coefficients in the sparsity wavelet framework.
arXiv Detail & Related papers (2024-05-13T15:30:41Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - Direct Exoplanet Detection Using Deep Convolutional Image Reconstruction
(ConStruct): A New Algorithm for Post-Processing High-Contrast Images [0.0]
We present a novel machine-learning approach for detecting faint point sources in high-contrast adaptive optics imaging datasets.
We show that a convolutional autoencoder neural network, trained on an extensive reference library of real imaging sequences, accurately reconstructs the stellar speckle noise at the location of a potential planet signal.
arXiv Detail & Related papers (2023-12-06T18:36:03Z) - Image Restoration with Point Spread Function Regularization and Active
Learning [5.575847437953924]
Large-scale astronomical surveys can capture numerous images of celestial objects, including galaxies and nebulae.
varying noise levels and point spread functions can hamper the accuracy and efficiency of information extraction from these images.
We propose a novel image restoration algorithm that connects a deep learning-based restoration algorithm with a high-fidelity telescope simulator.
arXiv Detail & Related papers (2023-10-31T23:16:26Z) - Deep learning-based deconvolution for interferometric radio transient
reconstruction [0.39259415717754914]
Radio astronomy facilities like LOFAR, MeerKAT/SKA, ASKAP/SKA, and the future SKA-LOW bring tremendous sensitivity in time and frequency.
These facilities enable advanced studies of radio transients, volatile by nature, that can be detected or missed in the data.
These transients are markers of high-energy accelerations of electrons and manifest in a wide range of temporal scales.
arXiv Detail & Related papers (2023-06-24T08:58:52Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Realistic galaxy image simulation via score-based generative models [0.0]
We show that a score-based generative model can be used to produce realistic yet fake images that mimic observations of galaxies.
Subjectively, the generated galaxies are highly realistic when compared with samples from the real dataset.
arXiv Detail & Related papers (2021-11-02T16:27:08Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Learned Spatial Representations for Few-shot Talking-Head Synthesis [68.3787368024951]
We propose a novel approach for few-shot talking-head synthesis.
We show that this disentangled representation leads to a significant improvement over previous methods.
arXiv Detail & Related papers (2021-04-29T17:59:42Z) - Crowdsampling the Plenoptic Function [56.10020793913216]
We present a new approach to novel view synthesis under time-varying illumination from such data.
We introduce a new DeepMPI representation, motivated by observations on the sparsity structure of the plenoptic function.
Our method can synthesize the same compelling parallax and view-dependent effects as previous MPI methods, while simultaneously interpolating along changes in reflectance and illumination with time.
arXiv Detail & Related papers (2020-07-30T02:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.