Deep learning-based deconvolution for interferometric radio transient
reconstruction
- URL: http://arxiv.org/abs/2306.13909v1
- Date: Sat, 24 Jun 2023 08:58:52 GMT
- Title: Deep learning-based deconvolution for interferometric radio transient
reconstruction
- Authors: Benjamin Naoto Chiche, Julien N. Girard, Joana Frontera-Pons, Arnaud
Woiselle, Jean-Luc Starck
- Abstract summary: Radio astronomy facilities like LOFAR, MeerKAT/SKA, ASKAP/SKA, and the future SKA-LOW bring tremendous sensitivity in time and frequency.
These facilities enable advanced studies of radio transients, volatile by nature, that can be detected or missed in the data.
These transients are markers of high-energy accelerations of electrons and manifest in a wide range of temporal scales.
- Score: 0.39259415717754914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio astronomy is currently thriving with new large ground-based radio
telescopes coming online in preparation for the upcoming Square Kilometre Array
(SKA). Facilities like LOFAR, MeerKAT/SKA, ASKAP/SKA, and the future SKA-LOW
bring tremendous sensitivity in time and frequency, improved angular
resolution, and also high-rate data streams that need to be processed. They
enable advanced studies of radio transients, volatile by nature, that can be
detected or missed in the data. These transients are markers of high-energy
accelerations of electrons and manifest in a wide range of temporal scales.
Usually studied with dynamic spectroscopy of time series analysis, there is a
motivation to search for such sources in large interferometric datasets. This
requires efficient and robust signal reconstruction algorithms. To correctly
account for the temporal dependency of the data, we improve the classical image
deconvolution inverse problem by adding the temporal dependency in the
reconstruction problem. Then, we introduce two novel neural network
architectures that can do both spatial and temporal modeling of the data and
the instrumental response. Then, we simulate representative time-dependent
image cubes of point source distributions and realistic telescope pointings of
MeerKAT to generate toy models to build the training, validation, and test
datasets. Finally, based on the test data, we evaluate the source profile
reconstruction performance of the proposed methods and classical image
deconvolution algorithm CLEAN applied frame-by-frame. In the presence of
increasing noise level in data frame, the proposed methods display a high level
of robustness compared to frame-by-frame imaging with CLEAN. The deconvolved
image cubes bring a factor of 3 improvement in fidelity of the recovered
temporal profiles and a factor of 2 improvement in background denoising.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Learning Wave Propagation with Attention-Based Convolutional Recurrent
Autoencoder Net [0.0]
We present an end-to-end attention-based convolutional recurrent autoencoder (AB-CRAN) network for data-driven modeling of wave propagation phenomena.
We employ a denoising-based convolutional autoencoder from the full-order snapshots given by time-dependent hyperbolic partial differential equations for wave propagation.
The attention-based sequence-to-sequence network increases the time-horizon of prediction by five times compared to the plain RNN-LSTM.
arXiv Detail & Related papers (2022-01-17T20:51:59Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Group-based Bi-Directional Recurrent Wavelet Neural Networks for Video
Super-Resolution [4.9136996406481135]
Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames.
Key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames.
arXiv Detail & Related papers (2021-06-14T06:36:13Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.