Transfer Learning in Robotics: An Upcoming Breakthrough? A Review of Promises and Challenges
- URL: http://arxiv.org/abs/2311.18044v3
- Date: Thu, 2 May 2024 17:03:59 GMT
- Title: Transfer Learning in Robotics: An Upcoming Breakthrough? A Review of Promises and Challenges
- Authors: Noémie Jaquier, Michael C. Welle, Andrej Gams, Kunpeng Yao, Bernardo Fichera, Aude Billard, Aleš Ude, Tamim Asfour, Danica Kragic,
- Abstract summary: Transfer learning is a conceptually-enticing paradigm in pursuit of truly intelligent embodied agents.
We provide the first taxonomy of its kind considering the key concepts of robot, task, and environment.
- Score: 21.559563253625207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is a conceptually-enticing paradigm in pursuit of truly intelligent embodied agents. The core concept -- reusing prior knowledge to learn in and from novel situations -- is successfully leveraged by humans to handle novel situations. In recent years, transfer learning has received renewed interest from the community from different perspectives, including imitation learning, domain adaptation, and transfer of experience from simulation to the real world, among others. In this paper, we unify the concept of transfer learning in robotics and provide the first taxonomy of its kind considering the key concepts of robot, task, and environment. Through a review of the promises and challenges in the field, we identify the need of transferring at different abstraction levels, the need of quantifying the transfer gap and the quality of transfer, as well as the dangers of negative transfer. Via this position paper, we hope to channel the effort of the community towards the most significant roadblocks to realize the full potential of transfer learning in robotics.
Related papers
- CrowdTransfer: Enabling Crowd Knowledge Transfer in AIoT Community [12.002871068635748]
Crowd Knowledge Transfer (CrowdTransfer) aims to transfer prior knowledge learned from a crowd of agents to reduce the training cost.
We present four transfer modes from the perspective of crowd intelligence, including derivation, sharing, evolution and fusion modes.
We explore some applications of AIoT areas, such as human activity recognition, urban computing, multi-robot system, and smart factory.
arXiv Detail & Related papers (2024-07-09T01:20:37Z) - Risk of Transfer Learning and its Applications in Finance [2.966069495345018]
We propose a novel concept of transfer risk and analyze its properties to evaluate transferability of transfer learning.
Numerical results demonstrate a strong correlation between transfer risk and overall transfer learning performance.
arXiv Detail & Related papers (2023-11-06T17:23:54Z) - Feasibility of Transfer Learning: A Mathematical Framework [4.530876736231948]
It begins by establishing the necessary mathematical concepts and constructing a mathematical framework for transfer learning.
It then identifies and formulates the three-step transfer learning procedure as an optimization problem, allowing for the resolution of the feasibility issue.
arXiv Detail & Related papers (2023-05-22T12:44:38Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Feasibility and Transferability of Transfer Learning: A Mathematical
Framework [4.031388559887924]
We build for the first time a mathematical framework for the general procedure of transfer learning.
We also propose a novel concept of transfer risk to evaluate transferability of transfer learning.
arXiv Detail & Related papers (2023-01-27T05:54:53Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Adaptive Policy Transfer in Reinforcement Learning [9.594432031144715]
We introduce a principled mechanism that can "Adapt-to-Learn", that is adapt the source policy to learn to solve a target task.
We show that the presented method learns to seamlessly combine learning from adaptation and exploration and leads to a robust policy transfer algorithm.
arXiv Detail & Related papers (2021-05-10T22:42:03Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - What is being transferred in transfer learning? [51.6991244438545]
We show that when training from pre-trained weights, the model stays in the same basin in the loss landscape.
We present that when training from pre-trained weights, the model stays in the same basin in the loss landscape and different instances of such model are similar in feature space and close in parameter space.
arXiv Detail & Related papers (2020-08-26T17:23:40Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.