Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation
- URL: http://arxiv.org/abs/2311.18062v1
- Date: Wed, 29 Nov 2023 20:16:23 GMT
- Title: Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation
- Authors: Xijia Zhang, Yue Guo, Simon Stepputtis, Katia Sycara, Joseph Campbell
- Abstract summary: We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions.
We show that our approach generates explanations as helpful as those produced by a human domain expert.
- Score: 7.647395374489533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent agents such as robots are increasingly deployed in real-world,
safety-critical settings. It is vital that these agents are able to explain the
reasoning behind their decisions to human counterparts; however, their behavior
is often produced by uninterpretable models such as deep neural networks. We
propose an approach to generate natural language explanations for an agent's
behavior based only on observations of states and actions, thus making our
method independent from the underlying model's representation. For such models,
we first learn a behavior representation and subsequently use it to produce
plausible explanations with minimal hallucination while affording user
interaction with a pre-trained large language model. We evaluate our method in
a multi-agent search-and-rescue environment and demonstrate the effectiveness
of our explanations for agents executing various behaviors. Through user
studies and empirical experiments, we show that our approach generates
explanations as helpful as those produced by a human domain expert while
enabling beneficial interactions such as clarification and counterfactual
queries.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Sim-to-Real Causal Transfer: A Metric Learning Approach to
Causally-Aware Interaction Representations [62.48505112245388]
We take an in-depth look at the causal awareness of modern representations of agent interactions.
We show that recent representations are already partially resilient to perturbations of non-causal agents.
We propose a metric learning approach that regularizes latent representations with causal annotations.
arXiv Detail & Related papers (2023-12-07T18:57:03Z) - Explaining Agent Behavior with Large Language Models [7.128139268426959]
We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions.
We show how a compact representation of the agent's behavior can be learned and used to produce plausible explanations.
arXiv Detail & Related papers (2023-09-19T06:13:24Z) - Learning by Self-Explaining [23.420673675343266]
We introduce a novel workflow in the context of image classification, termed Learning by Self-Explaining (LSX)
LSX utilizes aspects of self-refining AI and human-guided explanatory machine learning.
Our results indicate improvements via Learning by Self-Explaining on several levels.
arXiv Detail & Related papers (2023-09-15T13:41:57Z) - Conveying Autonomous Robot Capabilities through Contrasting Behaviour
Summaries [8.413049356622201]
We present an adaptive search method for efficiently generating contrasting behaviour summaries.
Our results indicate that adaptive search can efficiently identify informative contrasting scenarios that enable humans to accurately select the better performing agent.
arXiv Detail & Related papers (2023-04-01T18:20:59Z) - Probing via Prompting [71.7904179689271]
This paper introduces a novel model-free approach to probing, by formulating probing as a prompting task.
We conduct experiments on five probing tasks and show that our approach is comparable or better at extracting information than diagnostic probes.
We then examine the usefulness of a specific linguistic property for pre-training by removing the heads that are essential to that property and evaluating the resulting model's performance on language modeling.
arXiv Detail & Related papers (2022-07-04T22:14:40Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Feature-Based Interpretable Reinforcement Learning based on
State-Transition Models [3.883460584034766]
Growing concerns regarding the operational usage of AI models in the real-world has caused a surge of interest in explaining AI models' decisions to humans.
We propose a method for offering local explanations on risk in reinforcement learning.
arXiv Detail & Related papers (2021-05-14T23:43:11Z) - Imitating Interactive Intelligence [24.95842455898523]
We study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
To build agents that can robustly interact with humans, we would ideally train them while they interact with humans.
We use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour.
arXiv Detail & Related papers (2020-12-10T13:55:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.