Learning by Self-Explaining
- URL: http://arxiv.org/abs/2309.08395v3
- Date: Tue, 17 Sep 2024 16:24:49 GMT
- Title: Learning by Self-Explaining
- Authors: Wolfgang Stammer, Felix Friedrich, David Steinmann, Manuel Brack, Hikaru Shindo, Kristian Kersting,
- Abstract summary: We introduce a novel workflow in the context of image classification, termed Learning by Self-Explaining (LSX)
LSX utilizes aspects of self-refining AI and human-guided explanatory machine learning.
Our results indicate improvements via Learning by Self-Explaining on several levels.
- Score: 23.420673675343266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much of explainable AI research treats explanations as a means for model inspection. Yet, this neglects findings from human psychology that describe the benefit of self-explanations in an agent's learning process. Motivated by this, we introduce a novel workflow in the context of image classification, termed Learning by Self-Explaining (LSX). LSX utilizes aspects of self-refining AI and human-guided explanatory machine learning. The underlying idea is that a learner model, in addition to optimizing for the original predictive task, is further optimized based on explanatory feedback from an internal critic model. Intuitively, a learner's explanations are considered "useful" if the internal critic can perform the same task given these explanations. We provide an overview of important components of LSX and, based on this, perform extensive experimental evaluations via three different example instantiations. Our results indicate improvements via Learning by Self-Explaining on several levels: in terms of model generalization, reducing the influence of confounding factors, and providing more task-relevant and faithful model explanations. Overall, our work provides evidence for the potential of self-explaining within the learning phase of an AI model.
Related papers
- CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
We explore the potential of ensembling explanations generated by deep classification models using convolutional model.
Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior.
arXiv Detail & Related papers (2024-04-16T08:39:29Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z) - The Grammar of Interactive Explanatory Model Analysis [7.812073412066698]
We show how different Explanatory Model Analysis (EMA) methods complement each other.
We formalize the grammar of IEMA to describe potential human-model dialogues.
IEMA is implemented in a widely used human-centered open-source software framework.
arXiv Detail & Related papers (2020-05-01T17:12:22Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.