論文の概要: Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow
- arxiv url: http://arxiv.org/abs/2311.18072v2
- Date: Sat, 27 Apr 2024 18:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:15:22.154052
- Title: Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow
- Title(参考訳): 大規模防犯制約直流最適潮流に対する自己教師付き学習
- Authors: Seonho Park, Pascal Van Hentenryck,
- Abstract要約: SCOPF(Security-Constrained Optimal Power Flow)は、電力グリッドの安定性において重要な役割を果たすが、システムが成長するにつれてますます複雑になる。
本稿では,大規模SCOPF問題に対する準最適解を生成するための,自己教師付きエンドツーエンドのPDL-SCOPFについて紹介する。
- 参考スコア(独自算出の注目度): 20.078717680640214
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Security-Constrained Optimal Power Flow (SCOPF) plays a crucial role in power grid stability but becomes increasingly complex as systems grow. This paper introduces PDL-SCOPF, a self-supervised end-to-end primal-dual learning framework for producing near-optimal solutions to large-scale SCOPF problems in milliseconds. Indeed, PDL-SCOPF remedies the limitations of supervised counterparts that rely on training instances with their optimal solutions, which becomes impractical for large-scale SCOPF problems. PDL-SCOPF mimics an Augmented Lagrangian Method (ALM) for training primal and dual networks that learn the primal solutions and the Lagrangian multipliers, respectively, to the unconstrained optimizations. In addition, PDL-SCOPF incorporates a repair layer to ensure the feasibility of the power balance in the nominal case, and a binary search layer to compute, using the Automatic Primary Response (APR), the generator dispatches in the contingencies. The resulting differentiable program can then be trained end-to-end using the objective function of the SCOPF and the power balance constraints of the contingencies. Experimental results demonstrate that the PDL-SCOPF delivers accurate feasible solutions with minimal optimality gaps. The framework underlying PDL-SCOPF aims at bridging the gap between traditional optimization methods and machine learning, highlighting the potential of self-supervised end-to-end primal-dual learning for large-scale optimization tasks.
- Abstract(参考訳): SCOPF(Security-Constrained Optimal Power Flow)は、電力グリッドの安定性において重要な役割を果たすが、システムが成長するにつれてますます複雑になる。
PDL-SCOPFは,大規模SCOPF問題に対して,ミリ秒でほぼ最適解を生成するための,自己教師付きエンドツーエンドのPDL-SCOPFフレームワークである。
実際、PDL-SCOPFは最適なソリューションでトレーニングインスタンスに依存する教師付きシステムの制限を是正し、大規模なSCOPF問題では実用的ではない。
PDL-SCOPFは、原始解とラグランジアン乗算を学習する二元ネットワークを、制約のない最適化のために訓練するための拡張ラグランジアン法(ALM)を模倣する。
さらに、PDL-SCOPFは、名目ケースにおける電力収支の実現性を確保するための補修層と、自動一次応答(APR)を用いて演算する二分探索層とを具備し、発生器が緊急時にディスパッチする。
結果として得られる微分可能プログラムは、SCOPFの目的関数と事象のパワーバランス制約を使ってエンドツーエンドで訓練することができる。
実験結果から, PDL-SCOPFは最小限の最適性ギャップを持つ正確な実現可能な解を提供することが示された。
PDL-SCOPFの基盤となるフレームワークは、従来の最適化手法と機械学習のギャップを埋めることを目的としており、大規模最適化タスクのための自己教師付きエンドツーエンドの原始的双対学習の可能性を強調している。
関連論文リスト
- Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2024-06-03T09:41:42Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
モデル予測制御(MP)に基づく軌道計画が広く使われており、制御バリア(CBF)はその制約を改善することができる。
本稿では,CBF-MPC軌道計画のための自己教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-15T09:38:52Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - QCQP-Net: Reliably Learning Feasible Alternating Current Optimal Power
Flow Solutions Under Constraints [4.1920378271058425]
本稿では,ACOPFネットワークに計算効率よく入力をマッピングする新しい計算学習ACOPFを提案する。
提案手法は,既存のアプローチが失敗する状況において,優れた実現可能性率とコストを達成できることをシミュレーションにより示す。
論文 参考訳(メタデータ) (2024-01-11T20:17:44Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Self-Supervised Primal-Dual Learning for Constrained Optimization [19.965556179096385]
本稿では,制約付き最適化問題の最適解を直接近似する機械学習モデルの訓練方法を検討する。
プリマル・デュアル・ラーニング(PDL, Primal-Dual Learning)は,事前解決した一連のインスタンスや,学習と推論のための最適化解法を必要としない自己指導型トレーニング手法である。
論文 参考訳(メタデータ) (2022-08-18T20:07:10Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
固定点反復に基づく一般化クラスノセルスキーマンスキースキーム(GKM)を基本ODLモジュールとして設計する。
GKMスキームでは、最適トレーニングとハイパートレーニング変数を同時に解くために、バイレベルメタ最適化(BMO)アルゴリズムフレームワークを構築している。
論文 参考訳(メタデータ) (2022-06-16T01:50:25Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。