論文の概要: Learning for Semantic Knowledge Base-Guided Online Feature Transmission
in Dynamic Channels
- arxiv url: http://arxiv.org/abs/2311.18316v1
- Date: Thu, 30 Nov 2023 07:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 17:28:13.443596
- Title: Learning for Semantic Knowledge Base-Guided Online Feature Transmission
in Dynamic Channels
- Title(参考訳): 動的チャネルにおける意味的知識に基づくオンライン特徴伝達の学習
- Authors: Xiangyu Gao, Yaping Sun, Dongyu Wei, Xiaodong Xu, Hao Chen, Hao Yin,
Shuguang Cui
- Abstract要約: 本稿では,エンドツーエンド通信システムにおける動的チャネル条件とデバイスモビリティの課題に対処する,オンライン最適化フレームワークを提案する。
提案手法は,多レベル特徴伝達を駆動するための意味的知識ベースを活用することによって,既存の手法に基づいている。
オンライン最適化の課題を解決するために,リアルタイム意思決定のための報酬関数を慎重に設計した,ソフトアクターに基づく深層強化学習システムの設計を行った。
- 参考スコア(独自算出の注目度): 41.59960455142914
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the proliferation of edge computing, efficient AI inference on edge
devices has become essential for intelligent applications such as autonomous
vehicles and VR/AR. In this context, we address the problem of efficient remote
object recognition by optimizing feature transmission between mobile devices
and edge servers. We propose an online optimization framework to address the
challenge of dynamic channel conditions and device mobility in an end-to-end
communication system. Our approach builds upon existing methods by leveraging a
semantic knowledge base to drive multi-level feature transmission, accounting
for temporal factors and dynamic elements throughout the transmission process.
To solve the online optimization problem, we design a novel soft
actor-critic-based deep reinforcement learning system with a carefully designed
reward function for real-time decision-making, overcoming the optimization
difficulty of the NP-hard problem and achieving the minimization of semantic
loss while respecting latency constraints. Numerical results showcase the
superiority of our approach compared to traditional greedy methods under
various system setups.
- Abstract(参考訳): エッジコンピューティングの普及に伴い、エッジデバイス上での効率的なAI推論は、自動運転車やVR/ARといったインテリジェントなアプリケーションにとって不可欠になっている。
本稿では,モバイルデバイスとエッジサーバ間の特徴伝達を最適化することで,効率的な遠隔物体認識を実現する。
エンドツーエンド通信システムにおける動的チャネル条件とデバイスモビリティの課題に対処するオンライン最適化フレームワークを提案する。
提案手法は,マルチレベル特徴伝達を駆動する意味的知識ベースを活用し,伝達過程の時間的要因や動的要素を考慮し,既存の手法に基づいている。
オンライン最適化問題を解決するため,我々は,NPハード問題の最適化の難しさを克服し,遅延制約を尊重しながらセマンティックロスの最小化を達成し,リアルタイム意思決定のために慎重に設計された報酬関数を備えた,ソフトアクタによる深層強化学習システムを設計した。
計算結果から, 従来のグリージー法と比較して, 様々なシステム構成におけるアプローチの優位性を示した。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
接続された自動運転車は、エネルギー消費を最小化する可能性がある。
既存の決定論的手法は、一般に高い計算とメモリ要求に悩まされる。
本研究ではニューラルネットワークを介して実装された階層型マルチ水平最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-16T23:13:51Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
我々は,IOPO(Iterative Order-Preserving Policy Optimization)と呼ばれるディープラーニングに基づく最適化フレームワークを提案する。
IOPOはエネルギー効率のよいタスクオフロード決定をミリ秒で生成できる。
実験の結果,提案フレームワークは短時間でエネルギー効率の高いタスクオフロード決定を生成できることがわかった。
論文 参考訳(メタデータ) (2023-07-17T13:32:02Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning [0.5758073912084364]
本稿では,Reinforcement Learningフレームワークに基づく適応型オフロードソリューションを提案する。
Actor-Critic と Q-Learning の2つのよく知られた学習アルゴリズムの性能を評価し比較する。
我々のソリューションは、他の最先端のアプローチよりも高いレベルのオフロードを実現する。
論文 参考訳(メタデータ) (2021-10-01T13:34:12Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge
Intelligence via Online Learning [19.013102763434794]
本稿では,資源制約のあるモバイルデバイスと強力なエッジサーバとの間に協調的な深層推論システムを構築する。
我々のシステムには、Autodidactic Neurosurgeon (ANS)と呼ばれるオンライン学習モジュールが組み込まれており、最適な分割点を自動的に学習する。
ANSは、トラッキングシステムの変更とエンドツーエンドの推論遅延の低減の観点から、最先端のベンチマークを著しく上回る。
論文 参考訳(メタデータ) (2021-02-02T18:50:06Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。