Unclonable Cryptography with Unbounded Collusions and Impossibility of Hyperefficient Shadow Tomography
- URL: http://arxiv.org/abs/2311.18318v2
- Date: Mon, 04 Nov 2024 21:56:21 GMT
- Title: Unclonable Cryptography with Unbounded Collusions and Impossibility of Hyperefficient Shadow Tomography
- Authors: Alper Çakan, Vipul Goyal,
- Abstract summary: We give the first unbounded collusion-resistant (i.e. multiple-copy secure) copy-protection schemes.
We construct (i) public-key encryption, (ii) public-key functional encryption, (iii) signature and (iv) pseudorandom function schemes whose keys are copy-protected against unbounded collusions.
- Score: 11.781645368622517
- License:
- Abstract: Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy protection where we encode a program or functionality in a quantum state such that a user in possession of k copies cannot create k+1 copies, for any k. Introduced by Aaronson (CCC'09) over a decade ago, copy protection has proven to be notoriously hard to achieve. Previous work has been able to achieve copy-protection for various functionalities only in restricted models: (i) in the bounded collusion setting where k -> k+1 security is achieved for a-priori fixed collusion bound k (in the plain model with the same computational assumptions as ours, by Liu, Liu, Qian, Zhandry [TCC'22]), or, (ii) only k -> 2k security is achieved (relative to a structured quantum oracle, by Aaronson [CCC'09]). In this work, we give the first unbounded collusion-resistant (i.e. multiple-copy secure) copy-protection schemes, answering the long-standing open question of constructing such schemes, raised by multiple previous works starting with Aaronson (CCC'09). More specifically, we obtain the following results. - We construct (i) public-key encryption, (ii) public-key functional encryption, (iii) signature and (iv) pseudorandom function schemes whose keys are copy-protected against unbounded collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum) subexponentially secure iO and LWE. - We show that any unlearnable functionality can be copy-protected against unbounded collusions, relative to a classical oracle. - As a corollary of our results, we rule out the existence of hyperefficient quantum shadow tomography, * even given non-black-box access to the measurements, assuming subexponentially secure iO and LWE, or, * unconditionally relative to a quantumly accessible classical oracle, and hence answer an open question by Aaronson (STOC'18).
Related papers
- (Quantum) Indifferentiability and Pre-Computation [50.06591179629447]
Indifferentiability is a cryptographic paradigm for analyzing the security of ideal objects.
Despite its strength, indifferentiability is not known to offer security against pre-processing attacks.
We propose a strengthening of indifferentiability which is not only composable but also takes arbitrary pre-computation into account.
arXiv Detail & Related papers (2024-10-22T00:41:47Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - A Modular Approach to Unclonable Cryptography [4.336971448707467]
We propose unclonable puncturable obfuscation (UPO) and study its implications for unclonable cryptography.
We present modular (and arguably, simple) constructions of many primitives in unclonable cryptography.
We show that any cryptographic functionality can be copy-protected as long as this functionality satisfies a notion of security.
arXiv Detail & Related papers (2023-11-20T16:22:52Z) - How to Use Quantum Indistinguishability Obfuscation [1.6298172960110866]
We show how to achieve "best-possible" copy protection for all programs.
We show that applying qsiO to a program immediately achieves best-possible copy protection.
We also show that, assuming injective one-way functions exist, qsiO is concrete copy protection for a large family of puncturable programs.
arXiv Detail & Related papers (2023-11-13T23:07:25Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - A Note on Copy-Protection from Random Oracles [7.129830575525267]
Quantum copy-protection uses the no-cloning principle of quantum mechanics to protect software from being illegally distributed.
Since copy-protection is shown to be impossible to achieve in the plain model, we investigate the question of constructing copy-protection for arbitrary classes of unlearnable functions.
arXiv Detail & Related papers (2022-08-26T22:40:07Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Hidden Cosets and Applications to Unclonable Cryptography [15.248351992500078]
We study a generalization of hidden subspace states to hidden coset states (first introduced by Aaronson and Christiano [STOC '12]).
We explore unclonable properties of coset states and several applications.
arXiv Detail & Related papers (2021-07-12T19:04:01Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability.
This notion defines a function to be predictable if there exists an adversary who can use "partially blinded" access to predict values.
We show the suitability of blind unforgeability for supporting canonical constructions and reductions.
arXiv Detail & Related papers (2018-03-10T05:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.