論文の概要: Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2311.18363v4
- Date: Sat, 25 May 2024 15:03:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 08:25:17.025928
- Title: Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
- Title(参考訳): それぞれのテスト画像は特定のプロンプトを保持する:2次元医用画像分割のための連続的なテスト時間適応
- Authors: Ziyang Chen, Yongsheng Pan, Yiwen Ye, Mengkang Lu, Yong Xia,
- Abstract要約: ドメイン間の分散シフトは、実世界のアプリケーションに事前訓練されたセマンティックセグメンテーションモデルをデプロイする上で重要な障害である。
テスト時間適応は、推論中にドメイン間の分布シフトに取り組むのに有効であることが証明されている。
本稿では,各テスト画像に対する特定のプロンプトをトレーニングし,バッチ正規化レイヤの統計値を調整するために,Visual Prompt-based Test-Time Adaptation (VPTTA)法を提案する。
- 参考スコア(独自算出の注目度): 14.71883381837561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distribution shift widely exists in medical images acquired from different medical centres and poses a significant obstacle to deploying the pre-trained semantic segmentation model in real-world applications. Test-time adaptation has proven its effectiveness in tackling the cross-domain distribution shift during inference. However, most existing methods achieve adaptation by updating the pre-trained models, rendering them susceptible to error accumulation and catastrophic forgetting when encountering a series of distribution shifts (i.e., under the continual test-time adaptation setup). To overcome these challenges caused by updating the models, in this paper, we freeze the pre-trained model and propose the Visual Prompt-based Test-Time Adaptation (VPTTA) method to train a specific prompt for each test image to align the statistics in the batch normalization layers. Specifically, we present the low-frequency prompt, which is lightweight with only a few parameters and can be effectively trained in a single iteration. To enhance prompt initialization, we equip VPTTA with a memory bank to benefit the current prompt from previous ones. Additionally, we design a warm-up mechanism, which mixes source and target statistics to construct warm-up statistics, thereby facilitating the training process. Extensive experiments demonstrate the superiority of our VPTTA over other state-of-the-art methods on two medical image segmentation benchmark tasks. The code and weights of pre-trained source models are available at https://github.com/Chen-Ziyang/VPTTA.
- Abstract(参考訳): 分布シフトは、異なる医療センターから取得した医療画像に広く存在し、実世界の応用に事前訓練されたセマンティックセグメンテーションモデルを展開する上で重要な障害となる。
テスト時間適応は、推論中にドメイン間の分布シフトに取り組むのに有効であることが証明されている。
しかし、既存のほとんどの手法は、事前訓練されたモデルを更新することで適応し、一連の分散シフト(すなわち連続的なテスト時間適応設定の下で)に遭遇した場合にエラーの蓄積や破滅的な忘れをしがちである。
モデル更新に伴うこれらの課題を克服するため,本論文では,事前学習したモデルを凍結し,各テストイメージに対して特定のプロンプトをトレーニングし,バッチ正規化層内の統計を整合させるためのVisual Prompt-based Test-Time Adaptation (VPTTA)法を提案する。
具体的には、少数のパラメータしか持たず、単一のイテレーションで効果的に訓練できる軽量な低周波プロンプトを提案する。
迅速な初期化を促進するため、我々はVPTTAをメモリバンクに装備し、現在のプロンプトを以前のものから恩恵を受ける。
さらに、ソースとターゲット統計を混合してウォームアップ統計を構築し、トレーニングプロセスを容易にするウォームアップ機構を設計する。
2つの医用画像セグメンテーションベンチマークタスクにおいて、他の最先端手法よりもVPTTAの方が優れていることを示す。
事前トレーニング済みのソースモデルのコードと重みはhttps://github.com/Chen-Ziyang/VPTTAで公開されている。
関連論文リスト
- Embedded Prompt Tuning: Towards Enhanced Calibration of Pretrained Models for Medical Images [18.094731760514264]
医用画像分類タスクに基礎モデルを適用する際の微調整手法の有効性について検討する。
拡張チャネルにプロンプトトークンを埋め込む組込みプロンプトチューニング(EPT)手法を提案する。
EPTは、数ショットの医用画像分類タスクにおいて、いくつかの最先端の微調整方法よりも顕著に優れている。
論文 参考訳(メタデータ) (2024-07-01T06:35:53Z) - Medical Image Segmentation with InTEnt: Integrated Entropy Weighting for
Single Image Test-Time Adaptation [6.964589353845092]
テスト時間適応(TTA)とは、テスト中にトレーニングされたモデルを新しいドメインに適応させることである。
そこで本研究では,単一の未ラベルテスト画像のみを用いて,医用画像分割モデルを適用することを提案する。
提案手法は, 平均2.9%のDice係数で, 3つの医用画像データセットにまたがる24のソース/ターゲット領域に分割して検証した。
論文 参考訳(メタデータ) (2024-02-14T22:26:07Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
DiffTPTを提案する。DiffTPTは,事前学習した拡散モデルを用いて,多種多様な情報データを生成する。
DiffTPTがゼロショット精度を平均5.13%向上することを示す。
論文 参考訳(メタデータ) (2023-08-11T09:36:31Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
新たなパラダイムであるテスト時適応は、事前トレーニングされたモデルをテスト中にラベルのないデータに適用し、予測を行う可能性がある。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
DLTTAと呼ばれるテスト時間適応のための新しい動的学習率調整法を提案する。
本手法は,現在最先端のテスト時間適応法よりも一貫した性能向上を図り,有効かつ高速なテスト時間適応を実現する。
論文 参考訳(メタデータ) (2022-05-27T02:34:32Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z) - A Field of Experts Prior for Adapting Neural Networks at Test Time [8.244295783641396]
画像解析タスクにおける畳み込みニューラルネットワーク(CNN)の性能は、しばしば、トレーニングとテストイメージの間の取得関連分布シフトによって損なわれる。
テスト画像ごとに訓練されたCNNを微調整することでこの問題に対処することが提案されている。
テスト時間適応(TTA)は,テスト画像とトレーニング画像の特徴分布を一致させて行う。
論文 参考訳(メタデータ) (2022-02-10T11:44:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。