論文の概要: Day-Night Adaptation: An Innovative Source-free Adaptation Framework for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.13472v2
- Date: Sun, 15 Dec 2024 13:59:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:50:18.820488
- Title: Day-Night Adaptation: An Innovative Source-free Adaptation Framework for Medical Image Segmentation
- Title(参考訳): Day-Night Adaptation:医療画像セグメンテーションのためのイノベーティブなソースフリー適応フレームワーク
- Authors: Ziyang Chen, Yiwen Ye, Yongsheng Pan, Jingfeng Zhang, Yanning Zhang, Yong Xia,
- Abstract要約: そこで我々は,DyNA(Day-Night Adaptation)と呼ばれる新しい適応フレームワークを提案する。
日中は、各テストサンプルに凍結モデルを適用するために、低周波プロンプトが訓練される。
夜間,日中から収集したテストデータを再利用し,教師モデルと学生モデルとの知識を橋渡しするグローバルな学生モデルを導入する。
- 参考スコア(独自算出の注目度): 51.520294290813865
- License:
- Abstract: Distribution shifts widely exist in medical images acquired from different medical centres, hindering the deployment of semantic segmentation models trained on one centre (source domain) to another (target domain). While unsupervised domain adaptation has shown significant promise in mitigating these shifts, it poses privacy risks due to sharing data between centres. To facilitate adaptation while preserving data privacy, source-free domain adaptation (SFDA) and test-time adaptation (TTA) have emerged as effective paradigms, relying solely on target domain data. However, SFDA requires a pre-collected target domain dataset before deployment. TTA insufficiently exploit the potential value of test data, as it processes the test data only once. Considering that most medical centres operate during the day and remain inactive at night in clinical practice, we propose a novel adaptation framework called Day-Night Adaptation (DyNA) with above insights, which performs adaptation through day-night cycles without requiring access to source data. During the day, a low-frequency prompt is trained to adapt the frozen model to each test sample. We construct a memory bank for prompt initialization and develop a warm-up mechanism to enhance prompt training. During the night, we reuse test data collected from the day and introduce a global student model to bridge the knowledge between teacher and student models, facilitating model fine-tuning while ensuring training stability. Extensive experiments demonstrate that our DyNA outperforms existing TTA and SFDA methods on two benchmark medical image segmentation tasks. Code will be available after the paper is published.
- Abstract(参考訳): 分布シフトは、異なる医療センターから取得した医療画像に広く存在し、あるセンター(ソースドメイン)で訓練されたセマンティックセグメンテーションモデルの他のセンター(ターゲットドメイン)への展開を妨げる。
教師なしのドメイン適応は、これらのシフトを緩和する上で大きな可能性を示しているが、センタ間でデータを共有することによってプライバシー上のリスクが生じる。
データプライバシを保護しながら適応を容易にするため、ソースフリードメイン適応(SFDA)とテストタイム適応(TTA)が、ターゲットドメインデータのみに依存する効果的なパラダイムとして登場した。
しかし、SFDAはデプロイ前に事前にコンパイルされたターゲットドメインデータセットを必要とする。
TTAはテストデータのみを処理するため、テストデータの潜在的な価値を十分に活用する。
多くの医療センターが日中活動しており、臨床実践中も夜間に活動していないことを考慮し、上記の知見を取り入れたデイナイト適応(DyNA)と呼ばれる新しい適応フレームワークを提案し、ソースデータへのアクセスを必要とせず、昼夜のサイクルを通じて適応を行う。
日中は、各テストサンプルに凍結モデルを適用するために、低周波プロンプトが訓練される。
早急に初期化するためのメモリバンクを構築し,迅速なトレーニングを促進するためのウォームアップ機構を開発する。
夜間,日中から収集したテストデータを再利用し,教師モデルと学生モデルの知識を橋渡しし,モデルの微調整を容易にし,訓練安定性を確保した。
大規模な実験により、DyNAは既存のTTA法とSFDA法を2つのベンチマーク医用画像セグメンテーションタスクで上回っていることが明らかとなった。
コードは、論文が公開された後に公開される。
関連論文リスト
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
本稿では,テスト時間適応フレームワークを提案する。
我々は、インスタンスに依存しない履歴サンプルとインスタンスを意識したブースティングサンプルから特徴を検索するための軽量なキー値メモリを維持している。
理論的には,本手法の背後にある合理性を正当化し,アウト・オブ・ディストリビューションとクロスドメイン・データセットの両方において,その有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-20T15:58:43Z) - Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation [14.71883381837561]
ドメイン間の分散シフトは、実世界のアプリケーションに事前訓練されたセマンティックセグメンテーションモデルをデプロイする上で重要な障害である。
テスト時間適応は、推論中にドメイン間の分布シフトに取り組むのに有効であることが証明されている。
本稿では,各テスト画像に対する特定のプロンプトをトレーニングし,バッチ正規化レイヤの統計値を調整するために,Visual Prompt-based Test-Time Adaptation (VPTTA)法を提案する。
論文 参考訳(メタデータ) (2023-11-30T09:03:47Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA)は、ラベル付きデータから学習した知識を、未ラベルデータのみを使用してターゲットドメインに転送する学習技術である。
本研究では,ロバストドメイン適応のための2段階トレーニングステージを提案する。
本稿では,ラベルのないターゲットデータを有効利用して擬似ラベルと擬似境界を生成する,ロバストな擬似ラベルと擬似境界(PLPB)手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T14:25:18Z) - TAAL: Test-time Augmentation for Active Learning in Medical Image
Segmentation [7.856339385917824]
本稿では,セグメンテーションのための半教師付きアクティブラーニング手法であるTAAL(Test-time Augmentation for Active Learning)を提案する。
以上の結果から,TAALは既存のベースライン法よりも,完全教師付きと半教師付きの両方で優れていることが示された。
論文 参考訳(メタデータ) (2023-01-16T22:19:41Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
DLTTAと呼ばれるテスト時間適応のための新しい動的学習率調整法を提案する。
本手法は,現在最先端のテスト時間適応法よりも一貫した性能向上を図り,有効かつ高速なテスト時間適応を実現する。
論文 参考訳(メタデータ) (2022-05-27T02:34:32Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。