論文の概要: HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video
- arxiv url: http://arxiv.org/abs/2311.18448v1
- Date: Thu, 30 Nov 2023 10:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 16:52:35.046649
- Title: HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video
- Title(参考訳): HOLD: 対話型手と物体の映像からのカテゴリー別3次元再構成
- Authors: Zicong Fan, Maria Parelli, Maria Eleni Kadoglou, Muhammed Kocabas, Xu
Chen, Michael J. Black, Otmar Hilliges
- Abstract要約: HOLD - 単分子インタラクションビデオから手とオブジェクトを共同で再構成する最初のカテゴリーに依存しない方法。
我々は,3次元手と物体を2次元画像から切り離すことができる構成的明瞭な暗黙モデルを開発した。
本手法は,3次元手オブジェクトアノテーションに頼らず,組込みと組込みの両面において,完全教師付きベースラインに優れる。
- 参考スコア(独自算出の注目度): 70.11702620562889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since humans interact with diverse objects every day, the holistic 3D capture
of these interactions is important to understand and model human behaviour.
However, most existing methods for hand-object reconstruction from RGB either
assume pre-scanned object templates or heavily rely on limited 3D hand-object
data, restricting their ability to scale and generalize to more unconstrained
interaction settings. To this end, we introduce HOLD -- the first
category-agnostic method that reconstructs an articulated hand and object
jointly from a monocular interaction video. We develop a compositional
articulated implicit model that can reconstruct disentangled 3D hand and object
from 2D images. We also further incorporate hand-object constraints to improve
hand-object poses and consequently the reconstruction quality. Our method does
not rely on 3D hand-object annotations while outperforming fully-supervised
baselines in both in-the-lab and challenging in-the-wild settings. Moreover, we
qualitatively show its robustness in reconstructing from in-the-wild videos.
Code: https://github.com/zc-alexfan/hold
- Abstract(参考訳): 人間は毎日多様な物体と相互作用するため、人間の行動を理解しモデル化することが重要である。
しかし、RGBから手動オブジェクトを再構築するための既存のほとんどの方法は、事前にスキャンされたオブジェクトテンプレートを仮定するか、限られた3D手動オブジェクトデータに強く依存している。
この目的のために,単眼インタラクションビデオから手と物体を共同で再構成する最初のカテゴリー非依存手法であるHOLDを導入する。
2次元画像から不連続な3次元手と物体を再構成できる構音明瞭な暗黙モデルを開発した。
また,ハンドオブジェクトのポーズやコンストラクション品質を改善するために,ハンドオブジェクトの制約も取り入れた。
本手法は,3次元手オブジェクトアノテーションに頼らず,組込みと組込みの両面において,完全教師付きベースラインに優れる。
さらに,映像の再構成における頑健さを質的に示す。
コード: https://github.com/zc-alexfan/hold
関連論文リスト
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
本研究の目的は,手動物体のインタラクションを単一視点画像から再構築することである。
まず、手ポーズとオブジェクト形状を推定する新しいパイプラインを設計する。
最初の再構築では、事前に誘導された最適化方式を採用する。
論文 参考訳(メタデータ) (2024-11-21T16:33:35Z) - Reconstructing Hand-Held Objects in 3D from Images and Videos [53.277402172488735]
モノクローナルなRGB映像が与えられると、時間とともに手持ちの物体の幾何学を3Dで再構築することを目指している。
1枚のRGB画像から手と物体の形状を共同で再構成するMCC-Hand-Object(MCC-HO)を提案する。
次に、GPT-4(V)を用いてテキストから3D生成モデルを作成し、画像中のオブジェクトにマッチする3Dオブジェクトモデルを検索する。
論文 参考訳(メタデータ) (2024-04-09T17:55:41Z) - SHOWMe: Benchmarking Object-agnostic Hand-Object 3D Reconstruction [13.417086460511696]
96本の動画からなるSHOWMeデータセットについて,実物と詳細な3Dテクスチャメッシュで注釈付けした。
我々は、手の動きがビデオシーケンス全体を通して一定である厳密な手オブジェクトのシナリオを考察する。
この仮定により、SHOWMeの画像シーケンスにサブミリメートル精度の基底3Dスキャンを登録できる。
論文 参考訳(メタデータ) (2023-09-19T16:48:29Z) - HandNeRF: Learning to Reconstruct Hand-Object Interaction Scene from a Single RGB Image [41.580285338167315]
本稿では,1枚のRGB画像から3次元手オブジェクトシーンを再構成する前に,手オブジェクト間のインタラクションを学習する方法を提案する。
我々は手形状を用いて手と物体形状の相対的な構成を制約する。
そこで,HandNeRFは,手動による新たなグリップ構成のシーンを,同等の手法よりも高精度に再構築可能であることを示す。
論文 参考訳(メタデータ) (2023-09-14T17:42:08Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
我々の研究は、単一のRGB画像からハンドヘルドオブジェクトを再構築することを目的としている。
通常、既知の3Dテンプレートを仮定し、問題を3Dポーズ推定に還元する以前の作業とは対照的に、我々の作業は3Dテンプレートを知らずに汎用的なハンドヘルドオブジェクトを再構成する。
論文 参考訳(メタデータ) (2022-04-14T17:59:02Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
本稿では,D3D-HOIについて紹介する。D3D-HOIは3次元オブジェクトのポーズ,形状,動きを,人間と物体の相互作用の時,地上の真理アノテーションを付加したモノクロビデオのデータセットである。
我々のデータセットは、様々な現実世界のシーンとカメラの視点から捉えた、いくつかの共通したオブジェクトで構成されている。
我々は、推定された3次元人間のポーズを利用して、物体の空間的レイアウトとダイナミクスをより正確に推定する。
論文 参考訳(メタデータ) (2021-08-19T00:49:01Z) - Towards unconstrained joint hand-object reconstruction from RGB videos [81.97694449736414]
ハンドオブジェクト操作の再構築は、ロボット工学と人間のデモから学ぶ大きな可能性を秘めている。
まず,手動物体の相互作用をシームレスに処理できる学習不要な手動物体再構成手法を提案する。
論文 参考訳(メタデータ) (2021-08-16T12:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。