Union-over-Intersections: Object Detection beyond Winner-Takes-All
- URL: http://arxiv.org/abs/2311.18512v2
- Date: Thu, 19 Dec 2024 14:46:05 GMT
- Title: Union-over-Intersections: Object Detection beyond Winner-Takes-All
- Authors: Aritra Bhowmik, Pascal Mettes, Martin R. Oswald, Cees G. M. Snoek,
- Abstract summary: This paper revisits the problem of predicting box locations in object detection architectures.
We propose a simpler approach: regress only to the area of intersection between the proposal and the ground truth.
Instead of adopting a winner-takes-all strategy, we take the union over the regressed intersections of all boxes in a region to generate the final box outputs.
- Score: 54.89876370237598
- License:
- Abstract: This paper revisits the problem of predicting box locations in object detection architectures. Typically, each box proposal or box query aims to directly maximize the intersection-over-union score with the ground truth, followed by a winner-takes-all non-maximum suppression where only the highest scoring box in each region is retained. We observe that both steps are sub-optimal: the first involves regressing proposals to the entire ground truth, which is a difficult task even with large receptive fields, and the second neglects valuable information from boxes other than the top candidate. Instead of regressing proposals to the whole ground truth, we propose a simpler approach: regress only to the area of intersection between the proposal and the ground truth. This avoids the need for proposals to extrapolate beyond their visual scope, improving localization accuracy. Rather than adopting a winner-takes-all strategy, we take the union over the regressed intersections of all boxes in a region to generate the final box outputs. Our plug-and-play method integrates seamlessly into proposal-based, grid-based, and query-based detection architectures with minimal modifications, consistently improving object localization and instance segmentation. We demonstrate its broad applicability and versatility across various detection and segmentation tasks.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment [17.485775402656127]
A base detector can outperform existing methods for single domain generalization by a good margin.
We introduce a method to align detections from multiple views, considering both classification and localization outputs.
Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors.
arXiv Detail & Related papers (2024-05-23T12:29:25Z) - FindIt: Generalized Localization with Natural Language Queries [43.07139534653485]
FindIt is a simple and versatile framework that unifies a variety of visual grounding and localization tasks.
Key to our architecture is an efficient multi-scale fusion module that unifies the disparate localization requirements.
Our end-to-end trainable framework responds flexibly and accurately to a wide range of referring expression, localization or detection queries.
arXiv Detail & Related papers (2022-03-31T17:59:30Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization [73.03956876752868]
We propose a principled and end-to-end train-able framework to allow the network to pay attention to other parts of the object.
Specifically, we introduce the mixup data augmentation scheme into the classification network and design two uncertainty regularization terms to better interact with the mixup strategy.
arXiv Detail & Related papers (2020-08-03T21:19:08Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
We study the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios.
The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations.
We propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction.
arXiv Detail & Related papers (2020-05-22T22:02:56Z) - 1st Place Solutions for OpenImage2019 -- Object Detection and Instance
Segmentation [116.25081559037872]
This article introduces the solutions of the two champion teams, MMfruit' for the detection track and MMfruitSeg' for the segmentation track, in OpenImage Challenge 2019.
It is commonly known that for an object detector, the shared feature at the end of the backbone is not appropriate for both classification and regression.
We propose the Decoupling Head (DH) to disentangle the object classification and regression via the self-learned optimal feature extraction.
arXiv Detail & Related papers (2020-03-17T06:45:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.