A Simple Video Segmenter by Tracking Objects Along Axial Trajectories
- URL: http://arxiv.org/abs/2311.18537v2
- Date: Wed, 12 Jun 2024 08:20:59 GMT
- Title: A Simple Video Segmenter by Tracking Objects Along Axial Trajectories
- Authors: Ju He, Qihang Yu, Inkyu Shin, Xueqing Deng, Alan Yuille, Xiaohui Shen, Liang-Chieh Chen,
- Abstract summary: Video segmentation requires consistently segmenting and tracking objects over time.
Due to the quadratic dependency on input size, directly applying self-attention to video segmentation with high-resolution input features poses significant challenges.
We present Axial-VS, a framework that enhances video segmenters by tracking objects along axial trajectories.
- Score: 30.272535124699164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video segmentation requires consistently segmenting and tracking objects over time. Due to the quadratic dependency on input size, directly applying self-attention to video segmentation with high-resolution input features poses significant challenges, often leading to insufficient GPU memory capacity. Consequently, modern video segmenters either extend an image segmenter without incorporating any temporal attention or resort to window space-time attention in a naive manner. In this work, we present Axial-VS, a general and simple framework that enhances video segmenters by tracking objects along axial trajectories. The framework tackles video segmentation through two sub-tasks: short-term within-clip segmentation and long-term cross-clip tracking. In the first step, Axial-VS augments an off-the-shelf clip-level video segmenter with the proposed axial-trajectory attention, sequentially tracking objects along the height- and width-trajectories within a clip, thereby enhancing temporal consistency by capturing motion trajectories. The axial decomposition significantly reduces the computational complexity for dense features, and outperforms the window space-time attention in segmentation quality. In the second step, we further employ axial-trajectory attention to the object queries in clip-level segmenters, which are learned to encode object information, thereby aiding object tracking across different clips and achieving consistent segmentation throughout the video. Without bells and whistles, Axial-VS showcases state-of-the-art results on video segmentation benchmarks, emphasizing its effectiveness in addressing the limitations of modern clip-level video segmenters. Code and models are available at https://github.com/TACJu/Axial-VS.
Related papers
- 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
Egocentric videos present unique challenges for 3D scene understanding.
This paper introduces a novel approach to instance segmentation and tracking in first-person video.
By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches.
arXiv Detail & Related papers (2024-08-19T10:08:25Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - Efficient Long-Short Temporal Attention Network for Unsupervised Video
Object Segmentation [23.645412918420906]
Unsupervised Video Object (VOS) aims at identifying the contours of primary foreground objects in videos without any prior knowledge.
Previous methods do not fully use spatial-temporal context and fail to tackle this challenging task in real-time.
This motivates us to develop an efficient Long-Short Temporal Attention network (termed LSTA) for unsupervised VOS task from a holistic view.
arXiv Detail & Related papers (2023-09-21T01:09:46Z) - Tracking Anything with Decoupled Video Segmentation [87.07258378407289]
We develop a decoupled video segmentation approach (DEVA)
It is composed of task-specific image-level segmentation and class/task-agnostic bi-directional temporal propagation.
We show that this decoupled formulation compares favorably to end-to-end approaches in several data-scarce tasks.
arXiv Detail & Related papers (2023-09-07T17:59:41Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - TAEC: Unsupervised Action Segmentation with Temporal-Aware Embedding and
Clustering [27.52568444236988]
We propose an unsupervised approach for learning action classes from untrimmed video sequences.
In particular, we propose a temporal embedding network that combines relative time prediction, feature reconstruction, and sequence-to-sequence learning.
Based on the identified clusters, we decode the video into coherent temporal segments that correspond to semantically meaningful action classes.
arXiv Detail & Related papers (2023-03-09T10:46:23Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Self-supervised Sparse to Dense Motion Segmentation [13.888344214818737]
We propose a self supervised method to learn the densification of sparse motion segmentations from single video frames.
We evaluate our method on the well-known motion segmentation datasets FBMS59 and DAVIS16.
arXiv Detail & Related papers (2020-08-18T11:40:18Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.