Probing quantum phase transition via quantum speed limit
- URL: http://arxiv.org/abs/2311.18579v2
- Date: Wed, 12 Jun 2024 04:53:19 GMT
- Title: Probing quantum phase transition via quantum speed limit
- Authors: M Suman, S. Aravinda, Ranjan Modak,
- Abstract summary: Quantum speed limit (QSL) is the lower bound on the time required for a state to evolve to a desired final state under a given Hamiltonian evolution.
We consider one-dimensional systems that undergo delocalization-localization transition in the presence of quasiperiodic and linear potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum speed limit (QSL) is the lower bound on the time required for a state to evolve to a desired final state under a given Hamiltonian evolution. Three well-known QSLs exist Mandelstam-Tamm (MT), Margolus-Levitin (ML), and dual ML (ML$^*$) bounds. We consider one-dimensional systems that undergoes delocalization-localization transition in the presence of quasiperiodic and linear potential. By performing sudden quenches across the phase boundary, we find that the exact dynamics get captured very well by QSLs. We show that the MT bound is always tighter in the short time limit for any arbitrary state, while the optimal bound for the time of orthogonalization (time required to reach the orthogonal state) depends on the choice of the initial state. Further, for extreme quenches, we prove that the MT bound remains tighter for the time of orthogonalization, and it can qualitatively describe the non-analyticity in free energy for dynamical quantum phase transition (DQPT). Finally, we also demonstrate that the localization-delocalization transition point can be exactly identified from QSLs, whose computation cost is much less compared to many other diagnostic tools.
Related papers
- Quantum Speed Limits for Implementation of Unitary Transformations [0.0]
We provide bounds on the speed limit of quantum evolution by unitary operators in arbitrary dimensions.
We will discuss the application of these bounds in several classes of transformations that are of interest to quantum information processing.
arXiv Detail & Related papers (2024-06-06T11:17:21Z) - Stability of mixed-state quantum phases via finite Markov length [0.0]
We propose Markov length, the length scale at which the quantum conditional mutual information (CMI) decays exponentially.
We show that the Markov length is finite everywhere except at its decodability transition, at which it diverges.
This implies that the mixed state phase transition coincides with the decodability transition and also suggests a quasi-local decoding channel.
arXiv Detail & Related papers (2024-04-10T18:00:00Z) - Testing the unified bounds of quantum speed limit [16.72205806133928]
We introduce the generalized ML bounds, which prove to be more stringent in constraining dynamic evolution.
We conduct experiments in a superconducting circuit, where we have the capability to prepare a wide range of quantum photonic states.
arXiv Detail & Related papers (2024-03-06T09:55:29Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Triviality of quantum trajectories close to a directed percolation
transition [0.0]
We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
arXiv Detail & Related papers (2022-12-28T18:52:56Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Quantum Speed Limit under Brachistochrone Evolution [0.0]
We propose a geometrical approach to derive a quantum speed limit (QSL) bound for closed and open quantum systems.
We show that the QSL between a given initial state to a final state is determined not only by the entire dynamics of the system but also by the individual dynamics of a critical parameter.
arXiv Detail & Related papers (2022-07-30T14:30:01Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum speed limits for time evolution of a system subspace [77.34726150561087]
In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution.
We derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
arXiv Detail & Related papers (2020-11-05T12:13:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.