Reframing attention as a reinforcement learning problem for causal discovery
- URL: http://arxiv.org/abs/2507.13920v1
- Date: Fri, 18 Jul 2025 13:50:57 GMT
- Title: Reframing attention as a reinforcement learning problem for causal discovery
- Authors: Turan Orujlu, Christian Gumbsch, Martin V. Butz, Charley M Wu,
- Abstract summary: We introduce Causal Process framework as a novel theory for representing dynamic hypotheses about causal structure.<n>This allows us to reformulate the attention mechanism popularized by Transformer networks within an RL setting.
- Score: 3.2498796510544636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formal frameworks of causality have operated largely parallel to modern trends in deep reinforcement learning (RL). However, there has been a revival of interest in formally grounding the representations learned by neural networks in causal concepts. Yet, most attempts at neural models of causality assume static causal graphs and ignore the dynamic nature of causal interactions. In this work, we introduce Causal Process framework as a novel theory for representing dynamic hypotheses about causal structure. Furthermore, we present Causal Process Model as an implementation of this framework. This allows us to reformulate the attention mechanism popularized by Transformer networks within an RL setting with the goal to infer interpretable causal processes from visual observations. Here, causal inference corresponds to constructing a causal graph hypothesis which itself becomes an RL task nested within the original RL problem. To create an instance of such hypothesis, we employ RL agents. These agents establish links between units similar to the original Transformer attention mechanism. We demonstrate the effectiveness of our approach in an RL environment where we outperform current alternatives in causal representation learning and agent performance, and uniquely recover graphs of dynamic causal processes.
Related papers
- Learning Nonlinear Causal Reductions to Explain Reinforcement Learning Policies [50.30741668990102]
We take a causal perspective on explaining the behavior of reinforcement learning policies.<n>We learn a simplified high-level causal model that explains these relationships.<n>We prove that for a class of nonlinear causal models, there exists a unique solution.
arXiv Detail & Related papers (2025-07-20T10:25:24Z) - Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers [76.42159902257677]
We argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR)<n>OCR drives both generalization and hallucination, depending on whether the associated concepts are causally related.<n>Our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
arXiv Detail & Related papers (2025-06-12T16:50:45Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the interaction between world knowledge and logical reasoning.<n>We find that state-of-the-art large language models (LLMs) often rely on superficial generalizations.<n>We show that simple reformulations of the task can elicit more robust reasoning behavior.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning [26.34622544479565]
Causal dynamics learning is a promising approach to enhancing robustness in reinforcement learning.
We propose a novel model that infers fine-grained causal structures and employs them for prediction.
arXiv Detail & Related papers (2024-06-05T13:13:58Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy [38.86867078596718]
We consider explicitly modeling the generation process of states with the graphical causal model.<n>We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment.
arXiv Detail & Related papers (2024-02-07T14:09:34Z) - Targeted Reduction of Causal Models [55.11778726095353]
Causal Representation Learning offers a promising avenue to uncover interpretable causal patterns in simulations.
We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors.
Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems.
arXiv Detail & Related papers (2023-11-30T15:46:22Z) - Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms [17.074858228123706]
We propose a framework for learning causally disentangled representations supervised by causally related observed labels.
We show that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
arXiv Detail & Related papers (2023-06-02T00:28:48Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.