LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding,
Reasoning, and Planning
- URL: http://arxiv.org/abs/2311.18651v1
- Date: Thu, 30 Nov 2023 16:00:23 GMT
- Title: LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding,
Reasoning, and Planning
- Authors: Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei,
Hongyuan Zhu, Jiayuan Fan, Tao Chen
- Abstract summary: We present LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and respond to both textual-instructions and visual-prompts.
Experiments show that LL3DA achieves remarkable results, and surpasses various 3D vision-language models on both 3D Captioning and 3D Question Answering.
- Score: 42.61001274381612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Multimodal Models (LMM) have made it possible for
various applications in human-machine interactions. However, developing LMMs
that can comprehend, reason, and plan in complex and diverse 3D environments
remains a challenging topic, especially considering the demand for
understanding permutation-invariant point cloud 3D representations of the 3D
scene. Existing works seek help from multi-view images, and project 2D features
to 3D space as 3D scene representations. This, however, leads to huge
computational overhead and performance degradation. In this paper, we present
LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and
respond to both textual-instructions and visual-prompts. This help LMMs better
comprehend human interactions and further help to remove the ambiguities in
cluttered 3D scenes. Experiments show that LL3DA achieves remarkable results,
and surpasses various 3D vision-language models on both 3D Dense Captioning and
3D Question Answering.
Related papers
- Reason3D: Searching and Reasoning 3D Segmentation via Large Language Model [108.35777542298224]
This paper introduces Reason3D, a novel large language model for comprehensive 3D understanding.
We propose a hierarchical mask decoder to locate small objects within expansive scenes.
Experiments validate that Reason3D achieves remarkable results on large-scale ScanNet and Matterport3D datasets.
arXiv Detail & Related papers (2024-05-27T17:59:41Z) - Agent3D-Zero: An Agent for Zero-shot 3D Understanding [79.88440434836673]
Agent3D-Zero is an innovative 3D-aware agent framework addressing the 3D scene understanding.
We propose a novel way to make use of a Large Visual Language Model (VLM) via actively selecting and analyzing a series of viewpoints for 3D understanding.
A distinctive advantage of Agent3D-Zero is the introduction of novel visual prompts, which significantly unleash the VLMs' ability to identify the most informative viewpoints.
arXiv Detail & Related papers (2024-03-18T14:47:03Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
We introduce a novel and efficient prompt tuning paradigm, 3DMIT.
This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information.
We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain.
arXiv Detail & Related papers (2024-01-06T12:20:18Z) - M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts [30.571811801090224]
We introduce a comprehensive 3D instructionfollowing dataset called M3DBench.
It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts.
It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments.
arXiv Detail & Related papers (2023-12-17T16:53:30Z) - Chat-3D: Data-efficiently Tuning Large Language Model for Universal
Dialogue of 3D Scenes [56.727745047799246]
3D scene understanding has gained significant attention due to its wide range of applications.
This paper presents Chat-3D, which combines the 3D visual perceptual ability of pre-trained 3D representations and the impressive reasoning and conversation capabilities of advanced LLMs.
arXiv Detail & Related papers (2023-08-17T03:52:15Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
Large language models (LLMs) and Vision-Language Models (VLMs) have been proven to excel at multiple tasks, such as commonsense reasoning.
We propose to inject the 3D world into large language models and introduce a new family of 3D-LLMs.
Specifically, 3D-LLMs can take 3D point clouds and their features as input and perform a diverse set of 3D-related tasks.
arXiv Detail & Related papers (2023-07-24T17:59:02Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.