Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning
- URL: http://arxiv.org/abs/2503.00513v1
- Date: Sat, 01 Mar 2025 14:38:42 GMT
- Title: Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning
- Authors: Hanxun Yu, Wentong Li, Song Wang, Junbo Chen, Jianke Zhu,
- Abstract summary: We propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously.<n>We first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features.<n>For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects.
- Score: 18.185457833299235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM
Related papers
- MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.
Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.
We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - SplatTalk: 3D VQA with Gaussian Splatting [13.211810095081159]
Language-guided 3D scene understanding is important for advancing applications in robotics, AR/VR, and human-computer interaction.
We introduce SplatTalk, a novel method that uses a generalizable 3D Gaussian Splatting (3DGS) framework to produce 3D tokens suitable for direct input into a pretrained LLM.
arXiv Detail & Related papers (2025-03-08T16:31:48Z) - Multimodal 3D Reasoning Segmentation with Complex Scenes [92.92045550692765]
We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes.
The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects.
In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs.
arXiv Detail & Related papers (2024-11-21T08:22:45Z) - EmbodiedSAM: Online Segment Any 3D Thing in Real Time [61.2321497708998]
Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration.<n>An online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed.
arXiv Detail & Related papers (2024-08-21T17:57:06Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
We introduce a novel and efficient prompt tuning paradigm, 3DMIT.
This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information.
We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain.
arXiv Detail & Related papers (2024-01-06T12:20:18Z) - M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts [30.571811801090224]
We introduce a comprehensive 3D instructionfollowing dataset called M3DBench.
It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts.
It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments.
arXiv Detail & Related papers (2023-12-17T16:53:30Z) - LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding,
Reasoning, and Planning [42.61001274381612]
We present LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and respond to both textual-instructions and visual-prompts.
Experiments show that LL3DA achieves remarkable results, and surpasses various 3D vision-language models on both 3D Captioning and 3D Question Answering.
arXiv Detail & Related papers (2023-11-30T16:00:23Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
Large language models (LLMs) and Vision-Language Models (VLMs) have been proven to excel at multiple tasks, such as commonsense reasoning.
We propose to inject the 3D world into large language models and introduce a new family of 3D-LLMs.
Specifically, 3D-LLMs can take 3D point clouds and their features as input and perform a diverse set of 3D-related tasks.
arXiv Detail & Related papers (2023-07-24T17:59:02Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3D scene understanding plays a vital role in vision-based autonomous driving.
We propose a SurroundOcc method to predict the 3D occupancy with multi-camera images.
arXiv Detail & Related papers (2023-03-16T17:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.