Multimodal 3D Reasoning Segmentation with Complex Scenes
- URL: http://arxiv.org/abs/2411.13927v1
- Date: Thu, 21 Nov 2024 08:22:45 GMT
- Title: Multimodal 3D Reasoning Segmentation with Complex Scenes
- Authors: Xueying Jiang, Lewei Lu, Ling Shao, Shijian Lu,
- Abstract summary: We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes.
The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects.
In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs.
- Score: 92.92045550692765
- License:
- Abstract: The recent development in multimodal learning has greatly advanced the research in 3D scene understanding in various real-world tasks such as embodied AI. However, most existing work shares two typical constraints: 1) they are short of reasoning ability for interaction and interpretation of human intension and 2) they focus on scenarios with single-category objects only which leads to over-simplified textual descriptions due to the negligence of multi-object scenarios and spatial relations among objects. We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes. The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects. To this end, we create ReasonSeg3D, a large-scale and high-quality benchmark that integrates 3D spatial relations with generated question-answer pairs and 3D segmentation masks. In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs. Extensive experiments show that MORE3D excels in reasoning and segmenting complex multi-object 3D scenes, and the created ReasonSeg3D offers a valuable platform for future exploration of 3D reasoning segmentation. The dataset and code will be released.
Related papers
- 3D-GRES: Generalized 3D Referring Expression Segmentation [77.10044505645064]
3D Referring Expression (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description.
Generalized 3D Referring Expression (3D-GRES) extends the capability to segment any number of instances based on natural language instructions.
arXiv Detail & Related papers (2024-07-30T08:59:05Z) - Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models [20.277479473218513]
We introduce a new task: Zero-Shot 3D Reasoning for parts searching and localization for objects.
We design a simple baseline method, Reasoning3D, with the capability to understand and execute complex commands.
We show that Reasoning3D can effectively localize and highlight parts of 3D objects based on implicit textual queries.
arXiv Detail & Related papers (2024-05-29T17:56:07Z) - Reason3D: Searching and Reasoning 3D Segmentation via Large Language Model [108.35777542298224]
This paper introduces Reason3D, a novel large language model for comprehensive 3D understanding.
We propose a hierarchical mask decoder to locate small objects within expansive scenes.
Experiments validate that Reason3D achieves remarkable results on large-scale ScanNet and Matterport3D datasets.
arXiv Detail & Related papers (2024-05-27T17:59:41Z) - PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model [19.333506797686695]
We introduce a novel segmentation task known as reasoning part segmentation for 3D objects.
We output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object.
We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations.
arXiv Detail & Related papers (2024-04-04T23:38:45Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding,
Reasoning, and Planning [42.61001274381612]
We present LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and respond to both textual-instructions and visual-prompts.
Experiments show that LL3DA achieves remarkable results, and surpasses various 3D vision-language models on both 3D Captioning and 3D Question Answering.
arXiv Detail & Related papers (2023-11-30T16:00:23Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3D visual grounding aims to localize the target object in a 3D point cloud by a free-form language description.
We propose a relation-aware one-stage framework, named 3D Relative Position-aware Network (3-Net)
arXiv Detail & Related papers (2023-07-25T09:33:25Z) - 3D Concept Grounding on Neural Fields [99.33215488324238]
Existing visual reasoning approaches typically utilize supervised methods to extract 2D segmentation masks on which concepts are grounded.
Humans are capable of grounding concepts on the underlying 3D representation of images.
We propose to leverage the continuous, differentiable nature of neural fields to segment and learn concepts.
arXiv Detail & Related papers (2022-07-13T17:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.