論文の概要: CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation
- arxiv url: http://arxiv.org/abs/2311.18702v2
- Date: Wed, 26 Jun 2024 07:44:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 19:34:10.084055
- Title: CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation
- Title(参考訳): CritiqueLLM:大規模言語モデル生成評価のための情報的批判生成モデルを目指して
- Authors: Pei Ke, Bosi Wen, Zhuoer Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan Wang, Aohan Zeng, Yuxiao Dong, Hongning Wang, Jie Tang, Minlie Huang,
- Abstract要約: Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
- 参考スコア(独自算出の注目度): 87.44350003888646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the natural language processing (NLP) community started to make large language models (LLMs) act as a critic to evaluate the quality of generated texts, most of the existing works train a critique generation model on the evaluation data labeled by GPT-4's direct prompting. We observe that these models lack the ability to generate informative critiques in both pointwise grading and pairwise comparison especially without references. As a result, their generated critiques cannot provide fine-grained distinguishability on generated texts, causing unsatisfactory evaluation performance. In this paper, we propose a simple yet effective method called Eval-Instruct, which can first acquire pointwise grading critiques with pseudo references and then revise these critiques via multi-path prompting to obtain informative evaluation data in different tasks and settings, including pointwise grading and pairwise comparison with / without references. After fine-tuning on these data, the resulting model CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines and even achieve comparable evaluation performance to GPT-4 in system-level correlations of pointwise grading. We also demonstrate that our generated critiques can act as scalable feedback to further improve the generation quality of strong LLMs like ChatGPT.
- Abstract(参考訳): 自然言語処理 (NLP) コミュニティが大規模言語モデル (LLM) を作成テキストの品質を評価するために批判的な役割を果たし始めたため、既存の作品の多くはGPT-4の直接プロンプトによってラベル付けされた評価データに基づいて批評生成モデルを訓練している。
これらのモデルには、特に参照を伴わずに、ポイントグレーディングとペアワイズ比較の両方において、情報的批判を生成する能力がないことが観察された。
その結果、生成した批判は、生成したテキストに対してきめ細かい識別性を提供できないため、不満足な評価性能が生じる。
本稿では,Eval-Instructと呼ばれるシンプルな手法を提案し,まず擬似参照によるポイントワイドな評価基準を取得,次いでマルチパスによる修正を行い,ポイントワイドな評価と/非参照によるペアワイドな比較を含む,異なるタスクや設定における情報的評価データを得る。
これらのデータを微調整した後、結果のモデル CritiqueLLM は、ChatGPT と全てのオープンソースベースラインを上回り、ポイントワイドグレーディングのシステムレベルの相関において、GPT-4 に匹敵する評価性能が得られることを実証的に示す。
また、生成した批評がスケーラブルなフィードバックとして機能し、ChatGPTのような強力なLLMの生成品質をさらに向上することを示す。
関連論文リスト
- Language Model Preference Evaluation with Multiple Weak Evaluators [78.53743237977677]
GED(Preference Graph Ensemble and Denoise)は、複数のモデルベースの評価器を活用して嗜好グラフを構築する新しいアプローチである。
GEDは,モデルランキング,応答選択,モデルアライメントタスクにおいて,ベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-14T01:57:25Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - LLMs as Narcissistic Evaluators: When Ego Inflates Evaluation Scores [23.568883428947494]
本研究は,LMに基づく評価指標が,要約タスクの文脈において,それぞれの基盤となるLMに対して有利なバイアスを示すかどうかを考察する。
以上の結果から, 金のサマリーを活用せずに, 基準のない手法で評価指標を用いた場合, 特に有意なバイアスがみられた。
これらの結果は、生成的評価モデルによって提供される評価は、本質的なテキスト品質を超える要因に影響される可能性があることを裏付けている。
論文 参考訳(メタデータ) (2023-11-16T10:43:26Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large
Language Models on Sequence to Sequence Tasks [9.801767683867125]
我々は,3つのNLPベンチマークの予備的およびハイブリッドな評価を,自動評価と人的評価の両方を用いて提供する。
ChatGPTは、ほとんどのメトリクスにおいて、人間のレビュアーによって、他の人気のあるモデルよりも一貫して優れています。
また、人間のレビュアーは、最高のモデルの出力よりも金の基準を格段に悪く評価し、多くの人気のあるベンチマークの品質が劣っていることを示している。
論文 参考訳(メタデータ) (2023-10-20T20:17:09Z) - Constructive Large Language Models Alignment with Diverse Feedback [76.9578950893839]
本稿では,大規模言語モデルのアライメント向上のための新しい手法として,コンストラクティブ・ディバース・フィードバック(CDF)を導入する。
我々は,簡単な問題に対する批判的フィードバック,中級問題に対する改善的フィードバック,難題に対する選好的フィードバックを利用する。
このような多様なフィードバックでモデルをトレーニングすることで、トレーニングデータの少ない使用でアライメント性能を向上させることができる。
論文 参考訳(メタデータ) (2023-10-10T09:20:14Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
我々は,大規模な言語モデルによって生成された応答の引用,正しさ,および流布性を評価することができる評論家モデルを訓練するためのデータセットを構築した。
本稿では,批判モデルを利用して生成したテキストの異質な側面をリアルタイムにフィードバックする自動フィードバック機構を提案する。
提案手法の有効性を実験的に検証し,4%の精度向上とMAUVE測定値の約8%の精度向上を図った。
論文 参考訳(メタデータ) (2023-09-08T09:39:53Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
本稿では,大規模言語モデルにチェーン・オブ・シント(CoT)を組み込んだフレームワークであるG-Evalと,NLG出力の品質評価のためのフォームフィリングパラダイムを提案する。
GPT-4 をバックボーンモデルとした G-Eval は,要約タスクにおいて,0.514 と人間とのスピアマン相関を達成し,従来手法の差を大きく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:46:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。