論文の概要: Women Are Beautiful, Men Are Leaders: Gender Stereotypes in Machine
Translation and Language Modeling
- arxiv url: http://arxiv.org/abs/2311.18711v1
- Date: Thu, 30 Nov 2023 17:06:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 15:48:24.381526
- Title: Women Are Beautiful, Men Are Leaders: Gender Stereotypes in Machine
Translation and Language Modeling
- Title(参考訳): 女性は美しい、男性はリーダー:機械翻訳と言語モデリングにおけるジェンダーのステレオタイプ
- Authors: Mat\'u\v{s} Pikuliak and Andrea Hrckova and Stefan Oresko and Mari\'an
\v{S}imko
- Abstract要約: GESTは、マスク付きLMと英語-to-X機械翻訳システムにおいて、ジェンダーステレオタイプ推論を測定するための新しいデータセットである。
GESTには、9つのスラヴ語と英語で男女16のステレオタイプに対応するサンプルが含まれている。
- 参考スコア(独自算出の注目度): 0.36868085124383626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present GEST -- a new dataset for measuring gender-stereotypical reasoning
in masked LMs and English-to-X machine translation systems. GEST contains
samples that are compatible with 9 Slavic languages and English for 16 gender
stereotypes about men and women (e.g., Women are beautiful, Men are leaders).
The definition of said stereotypes was informed by gender experts. We used GEST
to evaluate 11 masked LMs and 4 machine translation systems. We discovered
significant and consistent amounts of stereotypical reasoning in almost all the
evaluated models and languages.
- Abstract(参考訳): GEST - マスク付きLMと英語-to-X機械翻訳システムにおけるジェンダーステレオタイプ推論の新たなデータセットを提案する。
GESTには9つのスラヴ語と英語で男女16のステレオタイプに対応するサンプルが含まれている(例:女性は美しい、男性はリーダー)。
このステレオタイプの定義は、ジェンダーの専門家によって知らされた。
GESTを用いて11個のマスク付きLMと4個の機械翻訳システムを評価した。
ほぼすべての評価されたモデルと言語において,かなりの量のステレオタイプ推論が発見された。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Who is better at math, Jenny or Jingzhen? Uncovering Stereotypes in Large Language Models [9.734705470760511]
我々はGlobalBiasを使って世界中の幅広いステレオタイプを研究しています。
与えられた名前に基づいて文字プロファイルを生成し、モデル出力におけるステレオタイプの有効性を評価する。
論文 参考訳(メタデータ) (2024-07-09T14:52:52Z) - Building Bridges: A Dataset for Evaluating Gender-Fair Machine Translation into German [17.924716793621627]
英独機械翻訳(MT)におけるジェンダーフェア言語の研究
2つの商用システムと6つのニューラルMTモデルを含む最初のベンチマーク研究を行う。
以上の結果から,ほとんどのシステムでは男性型が主流であり,性別ニュートラル変種は稀である。
論文 参考訳(メタデータ) (2024-06-10T09:39:19Z) - Are Models Biased on Text without Gender-related Language? [14.931375031931386]
ステレオタイプフリーシナリオにおけるジェンダーバイアスを調査するための新しいフレームワークUnStereoEval(USE)を紹介する。
USEは事前学習データ統計に基づいて文レベルスコアを定義し、その文が単語と性別の関連が最小限であるかどうかを判定する。
28の試験モデルにおいて、偏見が低いことは、偏見が単にジェンダー関連の単語の存在に由来するものではないことを示唆している。
論文 参考訳(メタデータ) (2024-05-01T15:51:15Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - Measuring Gender Bias in West Slavic Language Models [41.49834421110596]
チェコ語、ポーランド語、スロバキア語で最初のテンプレートベースのデータセットを導入し、男性、女性、非バイナリー対象に対する性別バイアスを測定した。
生成した単語の毒性と性差を定量化することにより、西スラヴ語モデルで符号化された性別バイアスを測定する。
これらの言語モデルは、被験者の性別に依存する有害な完成物を生成する。
論文 参考訳(メタデータ) (2023-04-12T11:49:43Z) - Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation [10.542861450223128]
3つのドメインのコーパスにおいて,ステレオタイプおよび非ステレオタイプなジェンダーロール代入を示す文法パターンが発見された。
我々は、コーパスの品質を手動で検証し、様々なコア参照解像度と機械翻訳モデルにおける性別バイアスを評価する。
論文 参考訳(メタデータ) (2021-09-08T18:14:11Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
代名詞として政治家の名前を取り巻く言語モデルによって生成される形容詞と動詞の用法を定量化する。
死者や指定された言葉が男女の政治家と関連しているのに対し、美人や離婚といった特定の言葉が主に女性政治家に関係していることが判明した。
論文 参考訳(メタデータ) (2021-04-15T15:03:26Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。