Pre-registration for Predictive Modeling
- URL: http://arxiv.org/abs/2311.18807v1
- Date: Thu, 30 Nov 2023 18:52:10 GMT
- Title: Pre-registration for Predictive Modeling
- Authors: Jake M. Hofman, Angelos Chatzimparmpas, Amit Sharma, Duncan J. Watts,
Jessica Hullman
- Abstract summary: We explore the possibility and potential benefits of introducing pre-registration to the field of predictive modeling.
We discuss current best practices in predictive modeling and their limitations, introduce a lightweight pre-registration template, and present a qualitative study with machine learning researchers.
We conclude by exploring the scope of problems that pre-registration can address in predictive modeling and acknowledging its limitations within this context.
- Score: 26.112782996222617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amid rising concerns of reproducibility and generalizability in predictive
modeling, we explore the possibility and potential benefits of introducing
pre-registration to the field. Despite notable advancements in predictive
modeling, spanning core machine learning tasks to various scientific
applications, challenges such as overlooked contextual factors, data-dependent
decision-making, and unintentional re-use of test data have raised questions
about the integrity of results. To address these issues, we propose adapting
pre-registration practices from explanatory modeling to predictive modeling. We
discuss current best practices in predictive modeling and their limitations,
introduce a lightweight pre-registration template, and present a qualitative
study with machine learning researchers to gain insight into the effectiveness
of pre-registration in preventing biased estimates and promoting more reliable
research outcomes. We conclude by exploring the scope of problems that
pre-registration can address in predictive modeling and acknowledging its
limitations within this context.
Related papers
- Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Predicting from Predictions [18.393971232725015]
We study how causal effects of predictions on outcomes can be identified from observational data.
We show that supervised learning that predict from predictions can find transferable functional relationships between features, predictions, and outcomes.
arXiv Detail & Related papers (2022-08-15T16:57:02Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
We propose a method to compute prediction intervals for model performance.
We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines.
arXiv Detail & Related papers (2020-12-15T21:32:03Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.