論文の概要: One-step Diffusion with Distribution Matching Distillation
- arxiv url: http://arxiv.org/abs/2311.18828v1
- Date: Thu, 30 Nov 2023 18:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 14:59:01.126455
- Title: One-step Diffusion with Distribution Matching Distillation
- Title(参考訳): 分布整合蒸留によるワンステップ拡散
- Authors: Tianwei Yin, Micha\"el Gharbi, Richard Zhang, Eli Shechtman, Fr\'edo
Durand, William T. Freeman, Taesung Park
- Abstract要約: 本稿では,拡散モデルを1ステップ画像生成器に変換する手法である分散マッチング蒸留(DMD)を紹介する。
約KLの発散を最小化することにより,拡散モデルと分布レベルで一致した一段階画像生成装置を強制する。
提案手法は,イメージネット64x64では2.62 FID,ゼロショットCOCO-30kでは11.49 FIDに到達した。
- 参考スコア(独自算出の注目度): 50.45103465564635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models generate high-quality images but require dozens of forward
passes. We introduce Distribution Matching Distillation (DMD), a procedure to
transform a diffusion model into a one-step image generator with minimal impact
on image quality. We enforce the one-step image generator match the diffusion
model at distribution level, by minimizing an approximate KL divergence whose
gradient can be expressed as the difference between 2 score functions, one of
the target distribution and the other of the synthetic distribution being
produced by our one-step generator. The score functions are parameterized as
two diffusion models trained separately on each distribution. Combined with a
simple regression loss matching the large-scale structure of the multi-step
diffusion outputs, our method outperforms all published few-step diffusion
approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot
COCO-30k, comparable to Stable Diffusion but orders of magnitude faster.
Utilizing FP16 inference, our model can generate images at 20 FPS on modern
hardware.
- Abstract(参考訳): 拡散モデルは高品質な画像を生成するが、数十の前方通過を必要とする。
本稿では,拡散モデルを画像品質に最小限の影響を与えるワンステップ画像生成器に変換する手法である分散マッチング蒸留(DMD)を紹介する。
我々は,2つのスコア関数,1つのターゲット分布,および1つのステップ生成器によって生成される合成分布の差として勾配を表現可能な近似KL分散を最小化することにより,拡散モデルと分布レベルで一致したワンステップ画像生成装置を強制する。
スコア関数は、各分布で個別に訓練された2つの拡散モデルとしてパラメータ化される。
多段拡散出力の大規模構造に適合する簡単な回帰損失を組み合わせることで,imagenet 64x64では2.62 fid,ゼロショットcoco-30kでは11.49 fidとなり,安定拡散に匹敵するほど高速である。
FP16推論を用いることで、最新のハードウェア上で20FPSで画像を生成することができる。
関連論文リスト
- One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
本稿では,Score Implicit Matching (SIM) を用いて,事前学習した拡散モデルを単一ステップジェネレータモデルに蒸留する手法を提案する。
SIMはワンステップジェネレータに対して強い経験的性能を示す。
リードトランスに基づく拡散モデルにSIMを適用することにより,テキスト・ツー・イメージ生成のための単一ステップ生成器を蒸留する。
論文 参考訳(メタデータ) (2024-10-22T08:17:20Z) - Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation [1.8434042562191815]
未ペア画像対画像(I2I)問題に適用可能な正規分布マッチング蒸留法を提案する。
画像データセット間の2次元例とI2Iを含む複数の翻訳タスクに適用した経験的性能を示す。
論文 参考訳(メタデータ) (2024-06-20T22:22:31Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。