論文の概要: Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging
- arxiv url: http://arxiv.org/abs/2312.00125v3
- Date: Wed, 31 Jul 2024 10:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 13:37:09.217564
- Title: Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging
- Title(参考訳): ラジオインターフェロメトリイメージングのためのデータ駆動前駆体を用いたスケーラブルベイズ不確実性定量化
- Authors: Tobías I. Liaudat, Matthijs Mars, Matthew A. Price, Marcelo Pereyra, Marta M. Betcke, Jason D. McEwen,
- Abstract要約: 次世代の電波干渉計は、前例のない角分解能と感度のおかげで、科学的発見を解き放つ可能性がある。
潜在的な可能性を解き放つ鍵の1つは、受信データの希薄さと複雑さを扱うことである。
本研究では,ラジオインターフェロメトリイメージングにおける不確実性定量化に対処するQuantifAIという手法を提案する。
- 参考スコア(独自算出の注目度): 5.678038945350452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next-generation radio interferometers like the Square Kilometer Array have the potential to unlock scientific discoveries thanks to their unprecedented angular resolution and sensitivity. One key to unlocking their potential resides in handling the deluge and complexity of incoming data. This challenge requires building radio interferometric imaging methods that can cope with the massive data sizes and provide high-quality image reconstructions with uncertainty quantification (UQ). This work proposes a method coined QuantifAI to address UQ in radio-interferometric imaging with data-driven (learned) priors for high-dimensional settings. Our model, rooted in the Bayesian framework, uses a physically motivated model for the likelihood. The model exploits a data-driven convex prior, which can encode complex information learned implicitly from simulations and guarantee the log-concavity of the posterior. We leverage probability concentration phenomena of high-dimensional log-concave posteriors that let us obtain information about the posterior, avoiding MCMC sampling techniques. We rely on convex optimisation methods to compute the MAP estimation, which is known to be faster and better scale with dimension than MCMC sampling strategies. Our method allows us to compute local credible intervals, i.e., Bayesian error bars, and perform hypothesis testing of structure on the reconstructed image. In addition, we propose a novel blazing-fast method to compute pixel-wise uncertainties at different scales. We demonstrate our method by reconstructing radio-interferometric images in a simulated setting and carrying out fast and scalable UQ, which we validate with MCMC sampling. Our method shows an improved image quality and more meaningful uncertainties than the benchmark method based on a sparsity-promoting prior. QuantifAI's source code: https://github.com/astro-informatics/QuantifAI.
- Abstract(参考訳): Square Kilometer Arrayのような次世代の電波干渉計は、前例のない角の解像度と感度のおかげで、科学的発見を解き放つ可能性がある。
潜在的な可能性を解き放つ鍵の1つは、受信データの希薄さと複雑さを扱うことである。
この課題は、大量のデータサイズに対処し、不確実な定量化(UQ)を伴う高品質な画像再構成を提供する無線干渉画像法を構築する必要がある。
本研究は、高次元設定のためのデータ駆動(学習)プリエントを用いた無線干渉画像におけるUQに対処するQuantifAIという手法を提案する。
ベイジアン・フレームワークをルーツとする我々のモデルは、物理的動機付けされたモデルを用いる。
このモデルは、シミュレーションから暗黙的に学習された複雑な情報をエンコードし、後部の対数凹度を保証する。
我々は、MCMCサンプリング技術を避けるために、高次元対数凹後部の確率集中現象を利用して後部に関する情報を得る。
我々は、MCMCサンプリング戦略よりも高速でスケールの良いMAP推定法として、凸最適化法を頼りにしている。
提案手法により, 局所信頼区間, すなわちベイズ誤差バーを計算し, 再構成画像上の構造の仮説テストを行うことができる。
さらに,異なるスケールで画素単位の不確かさを計算できる新しいブレージング高速手法を提案する。
シミュレーション環境での電波干渉画像の再構成と高速でスケーラブルなUQの実現により, MCMCサンプリングで検証した。
提案手法は, 画像の画質が向上し, より有意義な不確実性を示す。
QuantifAIのソースコードは、https://github.com/astro-informatics/QuantifAIである。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
不確実性定量化は、画像復元モデルの安全クリティカルドメインへの展開に不可欠である。
本稿では,入力画像の後方分布のPCをニューラルネットワークの単一前方通過で予測する手法を提案する。
提案手法は, インスタンス適応型不確実性方向を確実に伝達し, 後部サンプリングに匹敵する不確実性定量化を実現する。
論文 参考訳(メタデータ) (2023-09-27T09:51:29Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
本研究では,無作為な計測値の選択を考慮に入れた画像再構成のための新しい圧縮センシングフレームワークを提案する。
MOSAICは、エンコードされた一連の測定に注意機構を効率的に適用するために埋め込み技術を採用している。
既存のCS再建手法の代替として,提案するアーキテクチャを検証した。
論文 参考訳(メタデータ) (2023-06-01T17:05:02Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
物理インフォームドニューラルネットワーク(PINN)に基づく直接微動イメージングフレームワークを提案する。
PINNを用いてマルチ周波数波動場を表現し,その逆フーリエ変換を用いて音源画像の抽出を行う。
さらに,本手法をモニタリングフィールドデータの水理破砕に応用し,少ないアーティファクトで精度よくソースを画像化できることを実証する。
論文 参考訳(メタデータ) (2023-04-09T21:10:39Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
本稿では,変分オートエンコーダと正規化フローを組み合わせたシミュレーションに基づくフレームワークを提案し,パラメータの後方分布を推定する。
提案手法は,ABCと一貫した結果を生み出しながら,推定コストを桁違いに削減することを示した。
論文 参考訳(メタデータ) (2022-10-04T12:09:57Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
入力キャンバスを小さく保ちながら、ある領域を弾性的に拡大する注意的アプローチを提案する。
提案手法は,高速R-CNNより高速かつ微調整の少ない検出APを高速化する。
Argoverse-HD と BDD100K の自律走行データセットでは,提案手法が標準の高速 R-CNN を超越した検出APを微調整なしで促進することを示す。
論文 参考訳(メタデータ) (2021-08-27T03:07:55Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
回帰に基づく手法は最近、単眼画像からヒトのメッシュを再構成する有望な結果を示した。
パラメータの小さな偏差は、推定メッシュと画像のエビデンスの間に顕著な不一致を引き起こす可能性がある。
本稿では,特徴ピラミッドを活用し,予測パラメータを補正するために,ピラミッドメッシュアライメントフィードバック(pymaf)ループを提案する。
論文 参考訳(メタデータ) (2021-03-30T17:07:49Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
Deep Probabilistic Imagingは、未学習の深部生成モデルを用いて、未観測画像の後部分布を推定する。
論文 参考訳(メタデータ) (2020-10-27T17:23:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。