論文の概要: Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging
- arxiv url: http://arxiv.org/abs/2010.14462v2
- Date: Thu, 17 Dec 2020 06:13:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:58:56.392135
- Title: Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging
- Title(参考訳): Deep Probabilistic Imaging:Computational Imagingのための不確かさの定量化とマルチモーダルソリューション評価
- Authors: He Sun, Katherine L. Bouman
- Abstract要約: 本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
Deep Probabilistic Imagingは、未学習の深部生成モデルを用いて、未観測画像の後部分布を推定する。
- 参考スコア(独自算出の注目度): 11.677576854233394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational image reconstruction algorithms generally produce a single
image without any measure of uncertainty or confidence. Regularized Maximum
Likelihood (RML) and feed-forward deep learning approaches for inverse problems
typically focus on recovering a point estimate. This is a serious limitation
when working with underdetermined imaging systems, where it is conceivable that
multiple image modes would be consistent with the measured data. Characterizing
the space of probable images that explain the observational data is therefore
crucial. In this paper, we propose a variational deep probabilistic imaging
approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging
(DPI) employs an untrained deep generative model to estimate a posterior
distribution of an unobserved image. This approach does not require any
training data; instead, it optimizes the weights of a neural network to
generate image samples that fit a particular measurement dataset. Once the
network weights have been learned, the posterior distribution can be
efficiently sampled. We demonstrate this approach in the context of
interferometric radio imaging, which is used for black hole imaging with the
Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging
(MRI).
- Abstract(参考訳): 計算画像再構成アルゴリズムは一般に、不確実性や信頼性の尺度なしに単一の画像を生成する。
RML(Regularized Maximum Likelihood)と逆問題に対するフィードフォワード深層学習(Feed-forward Deep Learning)アプローチは通常、点推定の回復に重点を置いている。
これは、未決定の撮像システムで作業する場合に深刻な制限であり、複数の画像モードが測定されたデータと一致することが考えられる。
したがって、観測データを説明する確率的な画像の空間を特徴付けることが重要である。
本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
深部確率イメージング(Deep Probabilistic Imaging, DPI)は、未観測画像の後部分布を推定するために、訓練されていない深部生成モデルを用いる。
このアプローチではトレーニングデータを必要としない。代わりに、ニューラルネットワークの重みを最適化して、特定の測定データセットに適合するイメージサンプルを生成する。
ネットワークウェイトが学習されると、後方分布を効率的にサンプリングすることができる。
このアプローチは、イベントホライズン望遠鏡によるブラックホールイメージングや、mri(compressed sensing magnetic resonance imaging)で用いられるインターフェロメトリ・ラジオイメージング(interferometric radio imaging)という文脈で実証されている。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
不確実性定量化は、画像復元モデルの安全クリティカルドメインへの展開に不可欠である。
本稿では,入力画像の後方分布のPCをニューラルネットワークの単一前方通過で予測する手法を提案する。
提案手法は, インスタンス適応型不確実性方向を確実に伝達し, 後部サンプリングに匹敵する不確実性定量化を実現する。
論文 参考訳(メタデータ) (2023-09-27T09:51:29Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
断層撮影は一般的に逆問題である。
本稿では,トモグラフィ逆問題に対する複数の解を求める経験的サンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T20:27:31Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。