Low latency optical-based mode tracking with machine learning deployed on FPGAs on a tokamak
- URL: http://arxiv.org/abs/2312.00128v3
- Date: Tue, 9 Jul 2024 16:20:06 GMT
- Title: Low latency optical-based mode tracking with machine learning deployed on FPGAs on a tokamak
- Authors: Yumou Wei, Ryan F. Forelli, Chris Hansen, Jeffrey P. Levesque, Nhan Tran, Joshua C. Agar, Giuseppe Di Guglielmo, Michael E. Mauel, Gerald A. Navratil,
- Abstract summary: This study demonstrates an FPGA-based high-speed camera data acquisition and processing system.
It enables application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.
- Score: 0.8506991993461593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process fast camera data, at rates exceeding 100kfps, on $\textit{in situ}$ Field Programmable Gate Array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real-time. Our system utilizes a convolutional neural network (CNN) model which predicts the $n$=1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6$\mu$s and a throughput of up to 120kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.
Related papers
- A Multi-Sensor Fusion Approach for Rapid Orthoimage Generation in Large-Scale UAV Mapping [3.321306647655686]
A multi-sensor UAV system, integrating the Global Positioning System (GPS), Inertial Measurement Unit (IMU), 4D millimeter-wave radar and camera, can provide an effective solution to this problem.
A prior-pose-optimized feature matching method is introduced to enhance matching speed and accuracy.
Experiments show that our approach achieves accurate feature matching orthoimage generation in a short time.
arXiv Detail & Related papers (2025-03-03T05:55:30Z) - FPGA Deployment of LFADS for Real-time Neuroscience Experiments [2.1110034280282153]
LFADS (Latent Factor Analysis via Dynamical Systems) is a deep learning method for inferring latent dynamics from high-dimensional neural spiking data recorded simultaneously in single trials.
We introduce an efficient implementation of the LFADS models onto Field Programmable Gate Arrays (FPGA).
Our implementation shows an inference latency of 41.97 $mu$s for processing the data in a single trial on a Xilinx U55C.
arXiv Detail & Related papers (2024-02-02T07:52:20Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Theoretical framework for real time sub-micron depth monitoring using
quantum inline coherent imaging [55.2480439325792]
Inline Coherent Imaging (ICI) is a reliable method for real-time monitoring of various laser processes, including keyhole welding, additive manufacturing, and micromachining.
The axial resolution is limited to greater than 2 mum making ICI unsuitable for monitoring submicron processes.
Advancements in Quantum Optical Coherence Tomography (Q OCT) has the potential to address this issue by achieving better than 1 mum depth resolution.
arXiv Detail & Related papers (2023-09-17T17:05:21Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
In epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency.
In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform.
arXiv Detail & Related papers (2022-04-19T12:57:26Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - High-speed object detection with a single-photon time-of-flight image
sensor [2.648554238948439]
We present results from a portable SPAD camera system that outputs 16-bin photon timing histograms with 64x32 spatial resolution.
The results are relevant for safety-critical computer vision applications which would benefit from faster than human reaction times.
arXiv Detail & Related papers (2021-07-28T14:53:44Z) - 10-mega pixel snapshot compressive imaging with a hybrid coded aperture [48.95666098332693]
High resolution images are widely used in our daily life, whereas high-speed video capture is challenging due to the low frame rate of cameras working at the high resolution mode.
snapshot imaging (SCI) was proposed as a solution to the low throughput of existing imaging systems.
arXiv Detail & Related papers (2021-06-30T01:09:24Z) - Diagnostic data integration using deep neural networks for real-time
plasma analysis [2.770437783544638]
We explore the possibility of completely renewing the chain of acquisition for a fusion experiment.
In particular it is shown that, attempting a quantization of neurons transfer functions, such models can be modified to create an embedded firmware.
This firmware, approximating the deep inference model to a set of simple operations, fits well with the simple logic units that are largely abundant in FPGAs.
arXiv Detail & Related papers (2020-10-28T18:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.