DREAM: Diffusion Rectification and Estimation-Adaptive Models
- URL: http://arxiv.org/abs/2312.00210v2
- Date: Tue, 19 Mar 2024 22:19:18 GMT
- Title: DREAM: Diffusion Rectification and Estimation-Adaptive Models
- Authors: Jinxin Zhou, Tianyu Ding, Tianyi Chen, Jiachen Jiang, Ilya Zharkov, Zhihui Zhu, Luming Liang,
- Abstract summary: We present DREAM, a novel training framework representing Diffusion Rectification and Estimation Adaptive Models.
DREAM features two components: diffusion rectification, which adjusts training to reflect the sampling process, and estimation adaptation, which balances perception against distortion.
- Score: 50.66535824749801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DREAM, a novel training framework representing Diffusion Rectification and Estimation Adaptive Models, requiring minimal code changes (just three lines) yet significantly enhancing the alignment of training with sampling in diffusion models. DREAM features two components: diffusion rectification, which adjusts training to reflect the sampling process, and estimation adaptation, which balances perception against distortion. When applied to image super-resolution (SR), DREAM adeptly navigates the tradeoff between minimizing distortion and preserving high image quality. Experiments demonstrate DREAM's superiority over standard diffusion-based SR methods, showing a $2$ to $3\times $ faster training convergence and a $10$ to $20\times$ reduction in sampling steps to achieve comparable results. We hope DREAM will inspire a rethinking of diffusion model training paradigms.
Related papers
- Zigzag Diffusion Sampling: Diffusion Models Can Self-Improve via Self-Reflection [28.82743020243849]
Existing text-to-image diffusion models often fail to maintain high image quality and high prompt-image alignment for challenging prompts.
We propose diffusion self-reflection that alternately performs denoising and inversion.
We derive Zigzag Diffusion Sampling (Z-Sampling), a novel self-reflection-based diffusion sampling method.
arXiv Detail & Related papers (2024-12-14T16:42:41Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Reducing Spatial Fitting Error in Distillation of Denoising Diffusion
Models [13.364271265023953]
Knowledge distillation for diffusion models is an effective method to address this limitation with a shortened sampling process.
We attribute the degradation to the spatial fitting error occurring in the training of both the teacher and student model.
SFERD utilizes attention guidance from the teacher model and a designed semantic gradient predictor to reduce the student's fitting error.
We achieve an FID of 5.31 on CIFAR-10 and 9.39 on ImageNet 64$times$64 with only one step, outperforming existing diffusion methods.
arXiv Detail & Related papers (2023-11-07T09:19:28Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
Diffusion models have emerged as a pivotal advancement in generative models.
In this paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior.
We introduce an updated loss function that better aligns training objectives with sampling behaviors.
arXiv Detail & Related papers (2023-11-02T02:03:12Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.