Learning active tactile perception through belief-space control
- URL: http://arxiv.org/abs/2312.00215v1
- Date: Thu, 30 Nov 2023 21:54:42 GMT
- Title: Learning active tactile perception through belief-space control
- Authors: Jean-Fran\c{c}ois Tremblay, David Meger, Francois Hogan, Gregory Dudek
- Abstract summary: We propose a method that autonomously learns tactile exploration policies by developing a generative world model.
We evaluate our method on three simulated tasks where the goal is to estimate a desired object property.
We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner.
- Score: 21.708391958446274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots operating in an open world will encounter novel objects with unknown
physical properties, such as mass, friction, or size. These robots will need to
sense these properties through interaction prior to performing downstream tasks
with the objects. We propose a method that autonomously learns tactile
exploration policies by developing a generative world model that is leveraged
to 1) estimate the object's physical parameters using a differentiable Bayesian
filtering algorithm and 2) develop an exploration policy using an
information-gathering model predictive controller. We evaluate our method on
three simulated tasks where the goal is to estimate a desired object property
(mass, height or toppling height) through physical interaction. We find that
our method is able to discover policies that efficiently gather information
about the desired property in an intuitive manner. Finally, we validate our
method on a real robot system for the height estimation task, where our method
is able to successfully learn and execute an information-gathering policy from
scratch.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Planning for Learning Object Properties [117.27898922118946]
We formalize the problem of automatically training a neural network to recognize object properties as a symbolic planning problem.
We use planning techniques to produce a strategy for automating the training dataset creation and the learning process.
We provide an experimental evaluation in both a simulated and a real environment.
arXiv Detail & Related papers (2023-01-15T09:37:55Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - Affordance Learning from Play for Sample-Efficient Policy Learning [30.701546777177555]
We use a self-supervised visual affordance model from human teleoperated play data to enable efficient policy learning and motion planning.
We combine model-based planning with model-free deep reinforcement learning to learn policies that favor the same object regions favored by people.
We find that our policies train 4x faster than the baselines and generalize better to novel objects because our visual affordance model can anticipate their affordance regions.
arXiv Detail & Related papers (2022-03-01T11:00:35Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.