論文の概要: Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI
- arxiv url: http://arxiv.org/abs/2312.00236v2
- Date: Wed, 29 May 2024 07:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 00:00:32.668772
- Title: Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI
- Title(参考訳): Brainformer:fMRIによる人間の視覚脳機能とマシンビジョンモデル
- Authors: Xuan-Bac Nguyen, Xin Li, Pawan Sinha, Samee U. Khan, Khoa Luu,
- Abstract要約: 本稿では,人間の知覚システムにおけるfMRIパターンを解析するためのBrainformerという新しいフレームワークを紹介する。
この研究は、人間の知覚からニューラルネットワークへ知識を伝達する先進的なアプローチを導入する。
- 参考スコア(独自算出の注目度): 12.203617776046169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human perception plays a vital role in forming beliefs and understanding reality. A deeper understanding of brain functionality will lead to the development of novel deep neural networks. In this work, we introduce a novel framework named Brainformer, a straightforward yet effective Transformer-based framework, to analyze Functional Magnetic Resonance Imaging (fMRI) patterns in the human perception system from a machine-learning perspective. Specifically, we present the Multi-scale fMRI Transformer to explore brain activity patterns through fMRI signals. This architecture includes a simple yet efficient module for high-dimensional fMRI signal encoding and incorporates a novel embedding technique called 3D Voxels Embedding. Secondly, drawing inspiration from the functionality of the brain's Region of Interest, we introduce a novel loss function called Brain fMRI Guidance Loss. This loss function mimics brain activity patterns from these regions in the deep neural network using fMRI data. This work introduces a prospective approach to transfer knowledge from human perception to neural networks. Our experiments demonstrate that leveraging fMRI information allows the machine vision model to achieve results comparable to State-of-the-Art methods in various image recognition tasks.
- Abstract(参考訳): 人間の知覚は、信念を形成し、現実を理解する上で重要な役割を果たす。
脳機能のより深い理解は、新しいディープニューラルネットワークの開発につながるだろう。
本研究では,人間の知覚システムにおける機能的磁気共鳴イメージング(fMRI)パターンを機械学習の観点から解析するための,単純で効果的なトランスフォーマーベースフレームワークであるBrainformerを提案する。
具体的には,fMRI信号を用いて脳活動パターンを探索するマルチスケールfMRI変換器を提案する。
このアーキテクチャは、高次元fMRI信号符号化のためのシンプルだが効率的なモジュールを含み、3D Voxels Embeddingと呼ばれる新しい埋め込み技術が組み込まれている。
第2に、脳の関心領域の機能からインスピレーションを得て、脳fMRI誘導損失と呼ばれる新しい損失関数を導入する。
この損失関数は、fMRIデータを用いてディープニューラルネットワークのこれらの領域からの脳活動パターンを模倣する。
この研究は、人間の知覚からニューラルネットワークへ知識を伝達する先進的なアプローチを導入する。
実験により、fMRI情報を活用することで、様々な画像認識タスクにおいて、マシンビジョンモデルがState-of-the-Artメソッドに匹敵する結果が得られることを示した。
関連論文リスト
- Towards Neural Foundation Models for Vision: Aligning EEG, MEG, and fMRI Representations for Decoding, Encoding, and Modality Conversion [0.11249583407496218]
本稿では, コントラスト学習を活用することで, 脳活動のマルチモーダル表現に対して, 神経データと視覚刺激を協調させる基礎モデルを構築するための新しいアプローチを提案する。
脳波(EEG)、脳磁図(MEG)、fMRIデータを用いた。
われわれのフレームワークの能力は、ニューラルデータから視覚情報をデコードし、画像をニューラル表現にエンコードし、ニューラルモダリティ間の変換という3つの重要な実験によって実証される。
論文 参考訳(メタデータ) (2024-11-14T12:27:27Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
認知神経科学において広く用いられる技術として機能的磁気共鳴イメージング(fMRI)は、視覚知覚の過程における人間の視覚野の神経活動を記録することができる。
本研究では,SOTAビジョンモデルCORnetに基づくモデルであるReAlnet-fMRIを提案する。
fMRIを最適化したReAlnet-fMRIは、CORnetと制御モデルの両方においてヒトの脳との類似性が高く、また、内・内・対モダリティモデル脳(fMRI、EEG)も高い類似性を示した。
論文 参考訳(メタデータ) (2024-07-15T03:31:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
本稿では,人間の脳を模倣する人工ニューラルネットワークVISIONを提案する。
VISIONは、人間の血行動態の反応をfMRIボクセル値として、最先端の性能を超える精度で45%の精度で予測することに成功した。
論文 参考訳(メタデータ) (2023-09-26T15:38:26Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
2相fMRI表現学習フレームワークを提案する。
第1フェーズでは、double-contrastive Mask Auto-encoderを提案してfMRI機能学習者を事前訓練し、識別表現を学習する。
第2フェーズでは、イメージオートエンコーダからのガイダンスで視覚的再構成に最も有用な神経活性化パターンに参加するように、特徴学習者に調整する。
論文 参考訳(メタデータ) (2023-05-26T19:16:23Z) - Brain Captioning: Decoding human brain activity into images and text [1.5486926490986461]
本稿では,脳活動を意味のある画像やキャプションにデコードする革新的な手法を提案する。
提案手法は,最先端画像キャプションモデルを活用し,ユニークな画像再構成パイプラインを組み込んだものである。
生成したキャプションと画像の両方の定量的指標を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-19T09:57:19Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。