Backbone-based Dynamic Graph Spatio-Temporal Network for Epidemic
Forecasting
- URL: http://arxiv.org/abs/2312.00485v1
- Date: Fri, 1 Dec 2023 10:34:03 GMT
- Title: Backbone-based Dynamic Graph Spatio-Temporal Network for Epidemic
Forecasting
- Authors: Junkai Mao, Yuexing Han, Gouhei Tanaka and Bing Wang
- Abstract summary: Accurate epidemic forecasting is a critical task in controlling disease transmission.
Many deep learning-based models focus only on static or dynamic graphs when constructing spatial information.
We propose a novel model called Backbone-based Dynamic Graph Spatio-Temporal Network (BDGSTN)
- Score: 3.382729969842304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate epidemic forecasting is a critical task in controlling disease
transmission. Many deep learning-based models focus only on static or dynamic
graphs when constructing spatial information, ignoring their relationship.
Additionally, these models often rely on recurrent structures, which can lead
to error accumulation and computational time consumption. To address the
aforementioned problems, we propose a novel model called Backbone-based Dynamic
Graph Spatio-Temporal Network (BDGSTN). Intuitively, the continuous and smooth
changes in graph structure, make adjacent graph structures share a basic
pattern. To capture this property, we use adaptive methods to generate static
backbone graphs containing the primary information and temporal models to
generate dynamic temporal graphs of epidemic data, fusing them to generate a
backbone-based dynamic graph. To overcome potential limitations associated with
recurrent structures, we introduce a linear model DLinear to handle temporal
dependencies and combine it with dynamic graph convolution for epidemic
forecasting. Extensive experiments on two datasets demonstrate that BDGSTN
outperforms baseline models and ablation comparison further verifies the
effectiveness of model components. Furthermore, we analyze and measure the
significance of backbone and temporal graphs by using information metrics from
different aspects. Finally, we compare model parameter volume and training time
to confirm the superior complexity and efficiency of BDGSTN.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
We propose a novel temporal dynamic neural graph network (TodyNet) that can extract hidden-temporal dependencies without undefined graph structure.
The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.
arXiv Detail & Related papers (2023-04-11T09:21:28Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF) is a novel deep learning model that joins graph learning and forecasting.
In this paper, we propose a brand new method named Smooth Sparse Unit (SSU) to learn sparse and continuous graph adjacency matrix.
Our model achieves state-of-the-art performances with minor trainable parameters.
arXiv Detail & Related papers (2022-01-24T13:35:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
We propose a novel framework, namely static- and dynamic-graph learning-neural network (GL)
The model acquires static and dynamic graph matrices from data to model long-term and short-term patterns respectively.
It achieves state-of-the-art performance on almost all datasets.
arXiv Detail & Related papers (2021-12-06T08:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.