Questioning Biases in Case Judgment Summaries: Legal Datasets or Large
Language Models?
- URL: http://arxiv.org/abs/2312.00554v1
- Date: Fri, 1 Dec 2023 13:00:45 GMT
- Title: Questioning Biases in Case Judgment Summaries: Legal Datasets or Large
Language Models?
- Authors: Aniket Deroy, Subhankar Maity
- Abstract summary: This study scrutinizes the biases present in case judgment summaries produced by legal datasets and large language models.
By interrogating the accuracy, fairness, and implications of biases in these summaries, this study contributes to a better understanding of the role of technology in legal contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of legal datasets and the advent of large language models
(LLMs) have significantly transformed the legal field, particularly in the
generation of case judgment summaries. However, a critical concern arises
regarding the potential biases embedded within these summaries. This study
scrutinizes the biases present in case judgment summaries produced by legal
datasets and large language models. The research aims to analyze the impact of
biases on legal decision making. By interrogating the accuracy, fairness, and
implications of biases in these summaries, this study contributes to a better
understanding of the role of technology in legal contexts and the implications
for justice systems worldwide. In this study, we investigate biases wrt
Gender-related keywords, Race-related keywords, Keywords related to crime
against women, Country names and religious keywords. The study shows
interesting evidences of biases in the outputs generated by the large language
models and pre-trained abstractive summarization models. The reasoning behind
these biases needs further studies.
Related papers
- Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - High Risk of Political Bias in Black Box Emotion Inference Models [0.0]
This paper investigates the presence of political bias in machine learning models used for sentiment analysis (SA) in social science research.
We conducted a bias audit on a Polish sentiment analysis model developed in our lab.
Our findings indicate that annotations by human raters propagate political biases into the model's predictions.
arXiv Detail & Related papers (2024-07-18T20:31:07Z) - Topic Modelling Case Law Using a Large Language Model and a New Taxonomy for UK Law: AI Insights into Summary Judgment [0.0]
This paper develops and applies a novel taxonomy for topic modelling summary judgment cases in the United Kingdom.
Using a curated dataset of summary judgment cases, we use the Large Language Model Claude 3 Opus to explore functional topics and trends.
We find that Claude 3 Opus correctly classified the topic with an accuracy of 87.10%.
arXiv Detail & Related papers (2024-05-21T16:30:25Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - What's in a Name? Auditing Large Language Models for Race and Gender
Bias [49.28899492966893]
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4.
We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women.
arXiv Detail & Related papers (2024-02-21T18:25:25Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Bias in News Summarization: Measures, Pitfalls and Corpora [4.917075909999548]
We introduce definitions for biased behaviours in summarization models, along with practical operationalizations.
We measure gender bias in English summaries generated by both purpose-built summarization models and general purpose chat models.
We find content selection in single document summarization to be largely unaffected by gender bias, while hallucinations exhibit evidence of bias.
arXiv Detail & Related papers (2023-09-14T22:20:27Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
The study examines existing research on gender bias in AI language models and identifies gaps in the current knowledge.
The findings shed light on gendered word associations, language usage, and biased narratives present in the outputs of Large Language Models.
The paper presents strategies for reducing gender bias in LLMs, including algorithmic approaches and data augmentation techniques.
arXiv Detail & Related papers (2023-07-18T11:38:45Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - Inflating Topic Relevance with Ideology: A Case Study of Political
Ideology Bias in Social Topic Detection Models [16.279854003220418]
We investigate the impact of political ideology biases in training data.
Our work highlights the susceptibility of large, complex models to propagating the biases from human-selected input.
As a way to mitigate the bias, we propose to learn a text representation that is invariant to political ideology while still judging topic relevance.
arXiv Detail & Related papers (2020-11-29T05:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.